

After all, you may consider Dispersed Absorptive Elements (DAE) — a special form of activated charcoal

義大醫院 洪士元醫師 2020.1.11

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE Basic and animal studies of ABC-DAE

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE Basic and animal studies of ABC-DAE

Definition of CKD

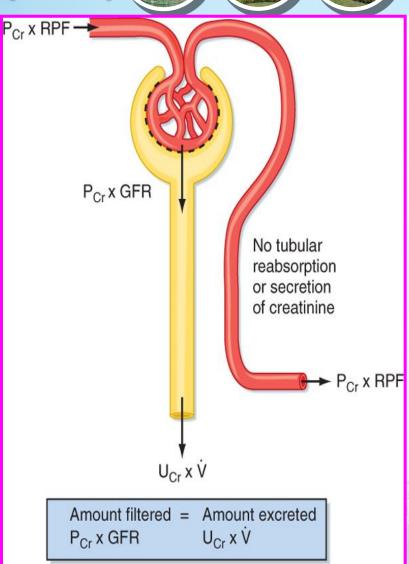
- Kidney damage for ≥ 3 months with or without decreased GFR (Glomerular Filtration Rate), as confirmed by kidney biopsy or markers of damage.
 - Markers of damage: proteinuria, abnormalities on the urine dipstick or sediment examination, or abnormalities on imaging studies of the kidneys.
- GFR < 60 mL/min/1.73 m² for ≥ 3 months with or without kidney damage.
 - GFR can be estimated from prediction equations based on serum creatinine and other variables, including age, sex, race, and body size.

CKD staging guideline

Stage	Description	GFR (ml/min/1.73 m ²)		
1	Kidney damage with normal or 个 GFR	>90		
2	Kidney damage with mild ↓ in GFR	60-89		
3	Moderate 🗸 in GFR	30-59		
4	Severe ↓ in GFR	15-29		
5	Kidney failure	<15 or dialysis		

NKF K/DOQI Clinical Practice Guidelines, 2004

EDAH HSY202001 5

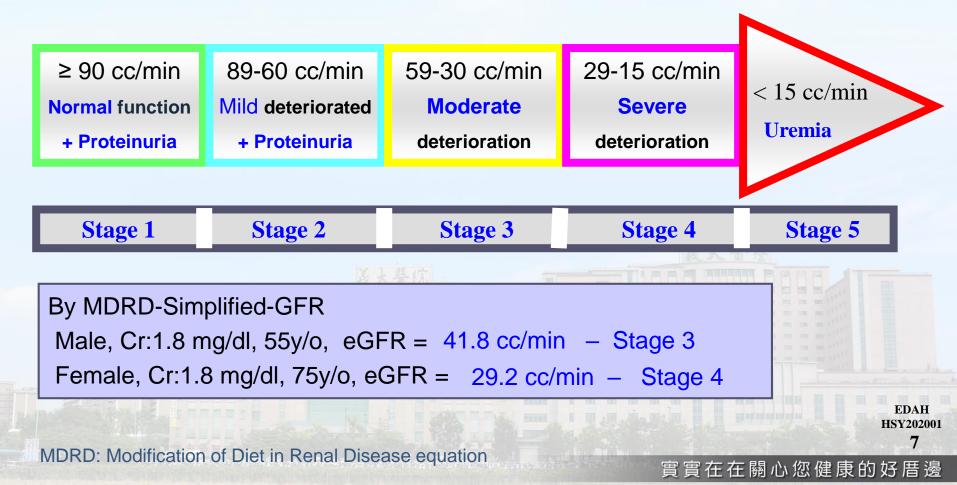

Clearance of Creatinine(CCr)

If Cr filtrated = Cr excreted PCr x GFR = UCr x UV GFR (ml/day) = UCr x UV / PCr

GFR (ml/min)
 UCr x UV / PCr x 1440

Ex: Cr 1.5 mg/dl, UCr 75 mg/dl, 24 hr urine 2880 ml.

CCr = 100 ml/min


Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Clinical CKD staging

MDRD-Simplified-GFR = $186 \times Cr^{-1.154} \times Age^{-0.203} \times 0.742$ (if Female) $\times 1.212$ (if black)

CKD risk categories

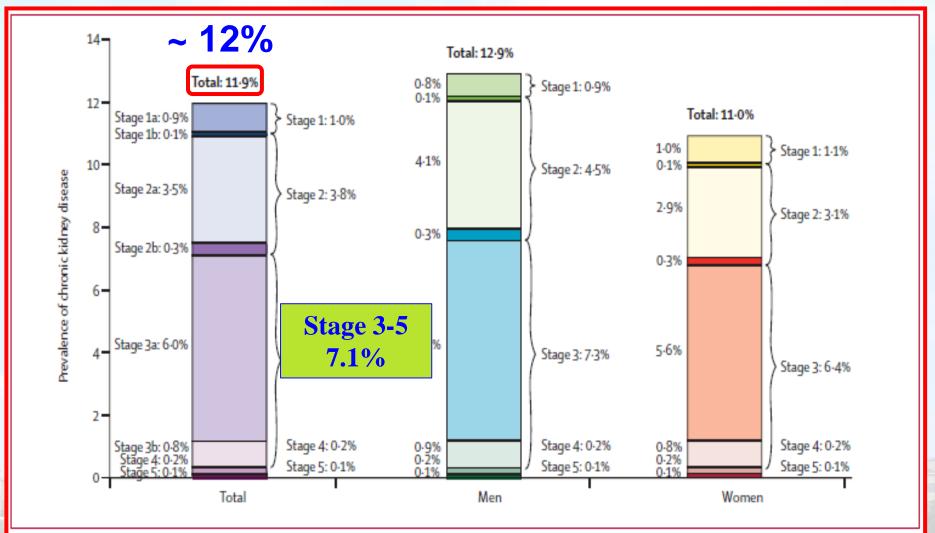
				Album				
Percentage of NHANES (2013-2016) participant in each category of CKD				A1	A2	A3		
				Normal to mildly increased	Moderately increased	Severely increased	Total	
(KDIGO 2	2012)		<30 mg/g 30-300 mg/g >3		>300 mg/g			
	G1	Normal to high	≥90	54.9	4.2	0.5	59.6	
GFR categories (ml/min/1.73 m ²)	G2	Mildly decreased	60-89	30.2	2.9	0.3	33.5	
	G3a	Mildly to moderately decreased	45-59	3.6	0.8	0.3	4.7	
	G3b	Moderately to severely decreased	30-44	1.0	0.4	0.2	1.7	
	G4	Severely decreased	15-29	0.13	0.10	0.15	0.37	da .
	G5	Kidney failure	<15	0.01	0.04	0.09	0.13	АН
	Total			89.9	8.5	1.6	100	02001

USRDS 2018 ADR, CKD Chapter 1

CKD prevalence, USA

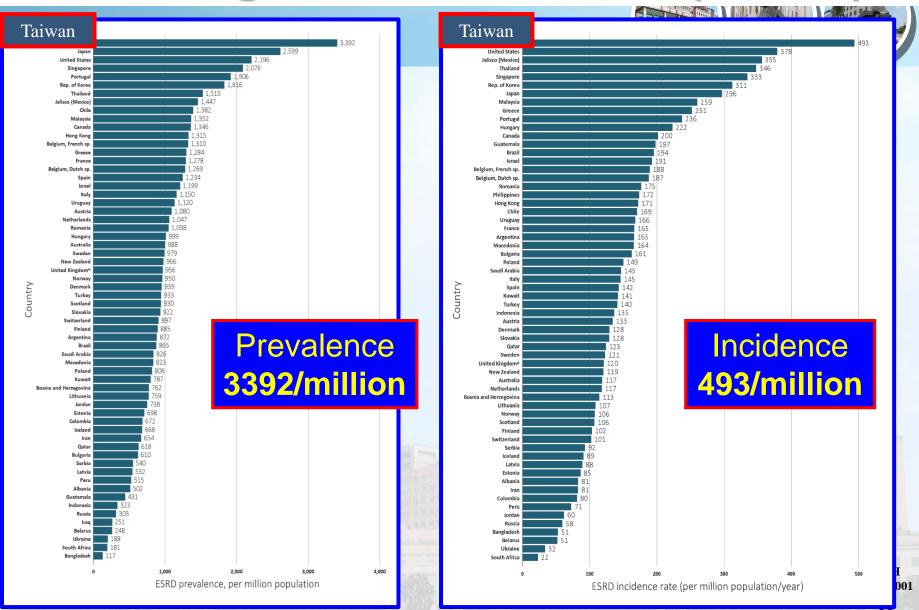
Summary of prevalence in each risk category, by cohort of NHANES participants (2001-2016)

	2001- 2004	2005- 2008	2009- 2012	2013- 2016
Low risk	85.8	85.6	86.5	85.1
Moderately high risk	10.6	10.3	9.7	10.7
High risk	2.4	2.7	2.4	2.7
Very high risk	1.2	1.4	1.4	1.4
CKD prevalence	14.2	14.4	13.5	14.8


EDAH HSY202001 **9**

USRDS 2018 ADR, CKD Chapter 1

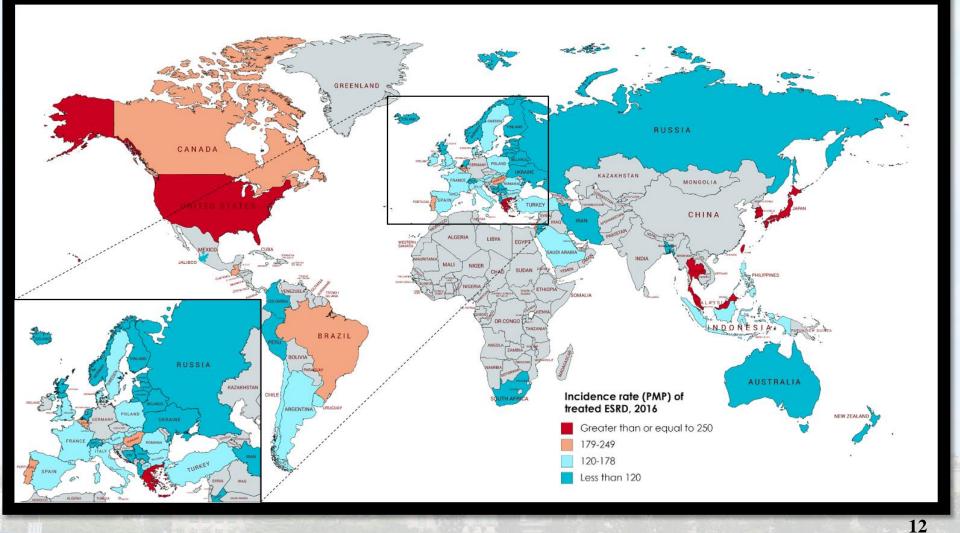
CKD prevalence, Taiwan



Wen CP. Lancet. 2008 Jun 28;371(9631):2173-82

實實在在關心您健康的好厝邊

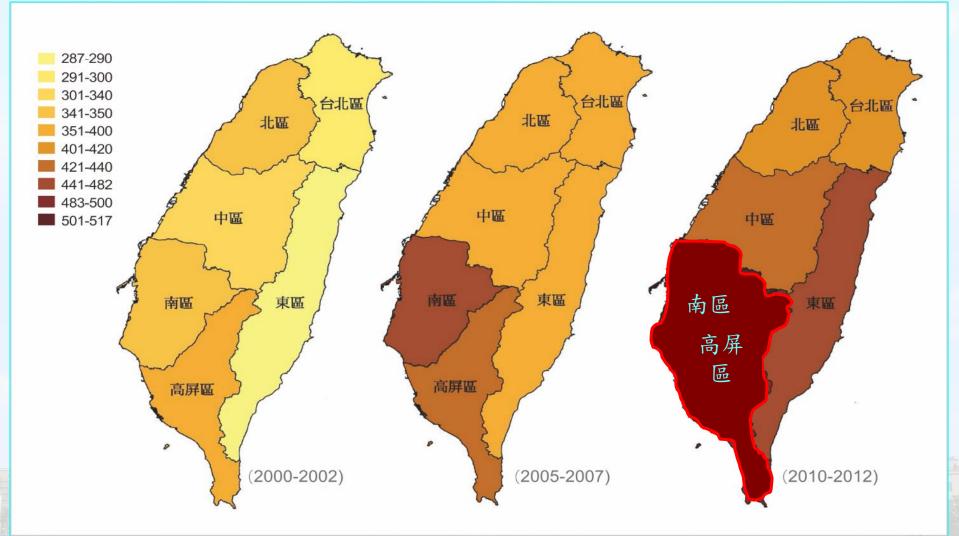
End-Stage Renal Disease (ESRD)



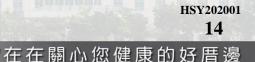
USRDS 2018 ADR

<u> 實</u> 官 在 在 關 心 您 健 康 的 好 厝 邊

ESRD incidence



ESRD incidence, Taiwan


2014 Annual Report on Kidney Disease in Taiwan, per million

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE Basic and animal studies of ABC-DAE

Possible risk factors

- Hypertension
- Family history of CKD
- Hyperlipidemia
- Long-term NSAID use
- Herbs abuser (Aristolochic acid)
- Acute kidney injury
- Old age (> 65 y/o)
- Obesity; Metabolic syndrome

Taiwan chronic kidney disease clinical guideline, 2015

- Smoking
- Lifestyle factors
- Hyperuricemia or Gout
- Heavy metal
 - Lead
 - Cadmium
 - Vitamin D deficiency

實 實 在 在 關 心 您 健 **康 的 好** 厝 邊

HSY202001

Possible risk factors

- Diabetes Mellitus
- Hypertension
- Family history of CKD
- Hyperlipidemia
- Long-term NSAID use
- Herbs abuser (Aristolochic acid)
- Acute kidney injury
- Old age (> 65 y/o)
- Obesity; Metabolic syndrome

Taiwan chronic kidney disease clinical guideline, 2015

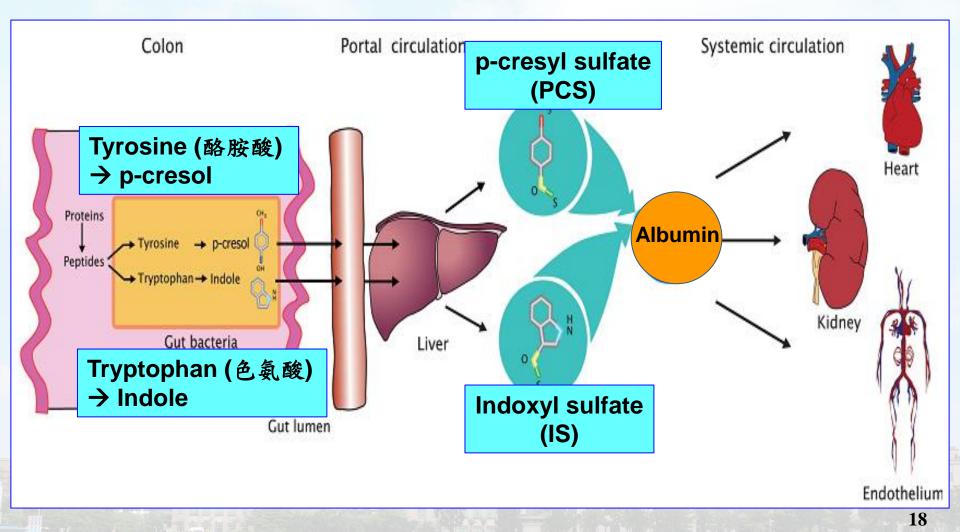
- Smoking
- Lifestyle factors
- Hyperuricemia or Gout
- Heavy metal
 - Lead
 - Cadmium
 - Vitamin D deficiency
 - **Uremic toxins ??**

EDAH HSY202001 16

在在關心您健康的好厝邊

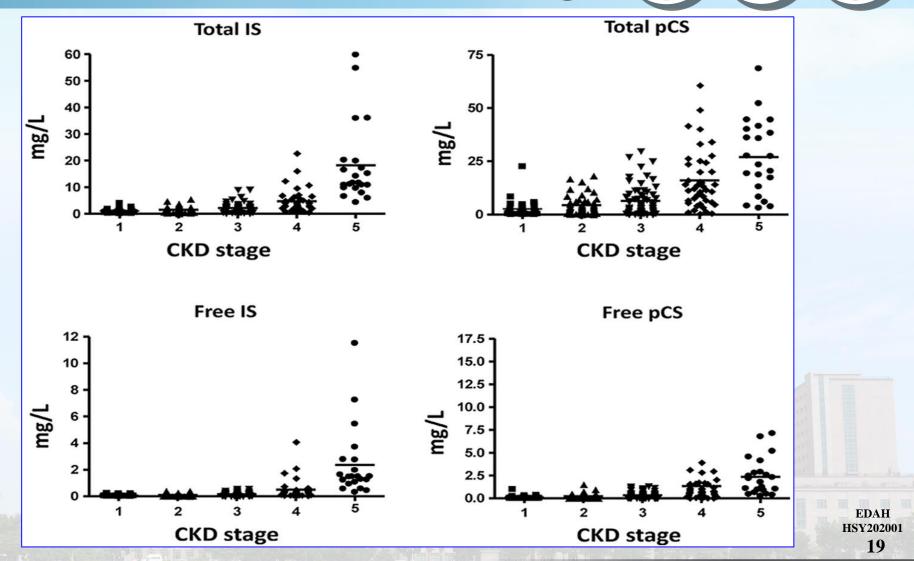
Uremic toxins

The European Toxin work group (EUTox) classification


- Small, water-soluble, non-protein bound: creatinine, urea
- Middle molecules: β2-microglobulin, peptides/proteins
- Small, protein-bound compounds: Indoxyl sulfate (IS), *p*-cresyl sulfate (PCS)
 - fermentation of tyrosine and tryptophan by intestinal microbiota generates p-cresol and indole, respectively. Both are further metabolized to p-cresyl sulfate (PCS) and Indoxyl sulfate (IS)
 - circulate in equilibrium between free solute versus bound to carrier proteins
 - tight protein binding severely limit clearances even by dialysis

Vanholder R. Kidney Int. 2003; 63: 1934–1943 Björn K.I. Nephrol Dial Transplant. 2011: 26: 759-761 HSV202001

Uremic toxins

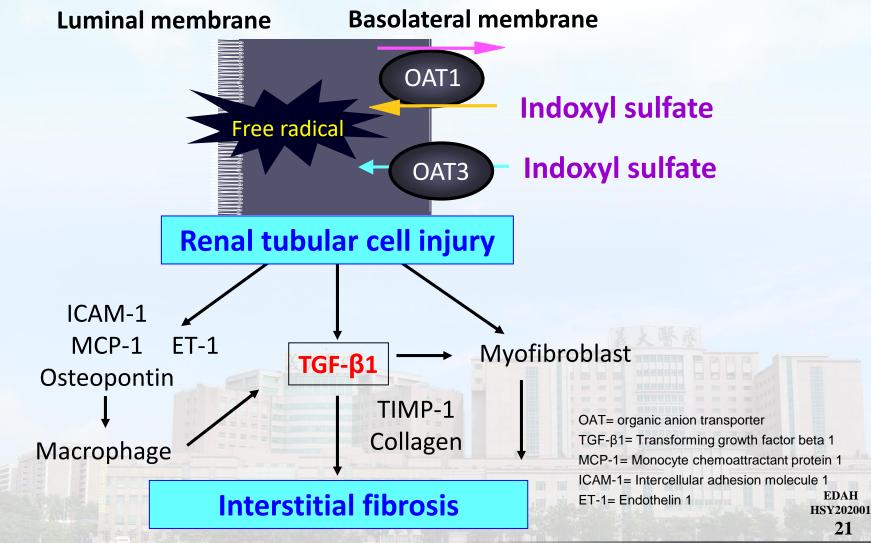


Björn K.I. Nephrol Dial Transplant. 2011: 26: 759-761

PCS and IS vs. CKD stage

Lin CN. Journal of Food and Drug Analysis. Available online 4 December 2018 實實在在關心您健康的好厝邊

PCS and IS


- Closely correlated to
 - Renal tubular injury, interstitial fibrosis, and renal survival.
 - Endothelial cell dysfunction
 - Atherosclerosis
 - Vascular calcifications
 - T-cell mediated inflammation
 - Increase oxidative stress
 - Activate catabolism of vitamin D
 - Activate RAAS
- p-cresol (mainly reflecting PCS) correlated to overall mortality and cardiovascular disease in ESRD and CKD patients
 - IS correlated to overall mortality and cardiovascular disease

EDAH HSY202001 20

Björn K.I. Nephrol Dial Transplant. 2011: 26: 759-761

IS induce Tubular Injury & Interstitial Fibrosis

<u> 宵 宵 在 在 關 心 您 健 康 的 好 厝 邊</u>

JASN 13:1711-1720, 2002; J Lab Clin Med 124:96-104, 1994

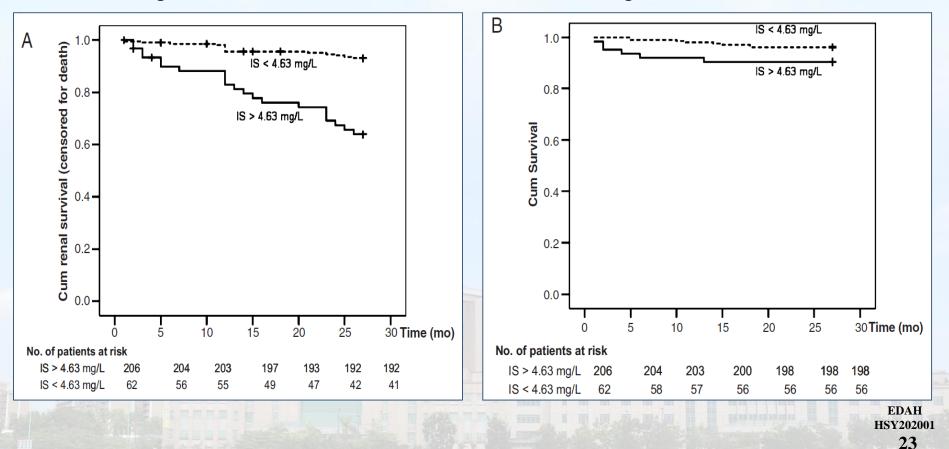
Predict CKD progression

- Human study by Wu IW et al. in 2011
- 268 CKD patients, mean F/U of 21 ± 3 months
 - 35 (13.1%) had renal progression
 - 14 (5.2%) died
- High-serum PCS associated with renal progression and all-cause mortality
 - independent of creatinine, age, gender, diabetes, albumin, IS, CaxP product, i-PTH, Hgb and hs-CRP
 - High-serum IS associated with renal progression
 - however, the predictive power of IS was weakened when serum PCS was also present in the analytical model.

Wu IW. Nephrol Dial Transplant . 2011: 26: 938-947

<u> 宵</u> 宵 在 在 關 心 您 健 康 的 好 厝 邊

HSY202001 2.2



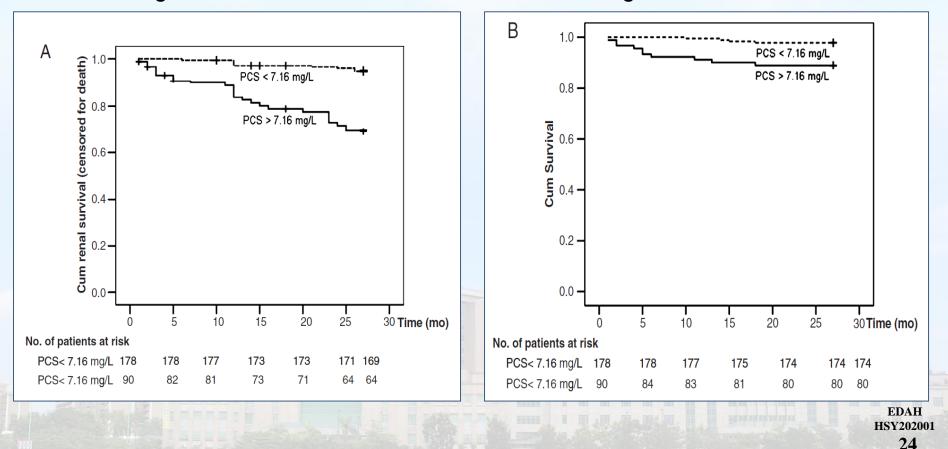
Indoxyl sulfate (IS)

Cumulative renal survival log-rank, P < 0.001

Cumulative survival log-rank, P = 0.062

Wu IW. Nephrol Dial Transplant . 2011: 26: 938–947

實 實 在 在 關 心 您 健 康 的 好 **厝** 邊



p-cresyl sulfate (PCS)

Cumulative renal survival log-rank, P < 0.001

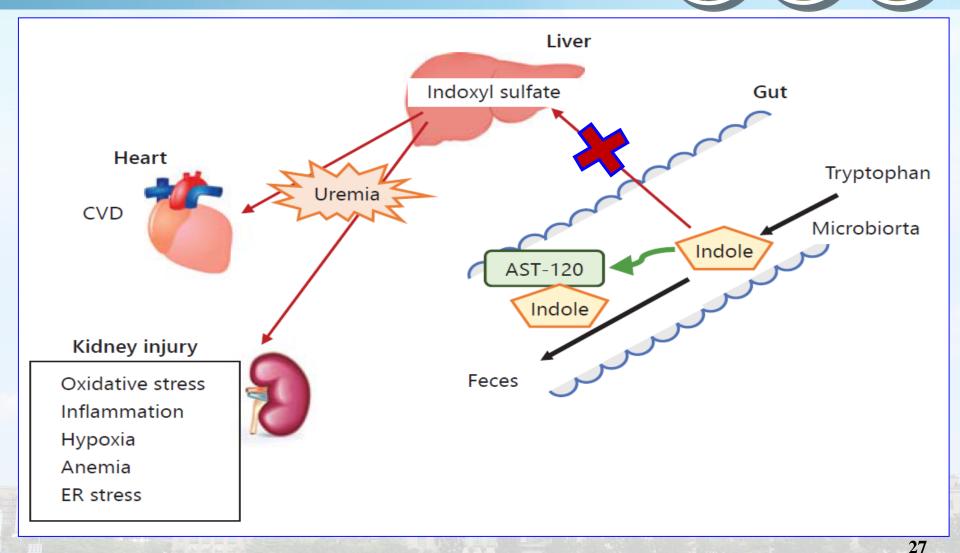
Cumulative survival log-rank, P = 0.002

Wu IW. Nephrol Dial Transplant . 2011: 26: 938–947

<u> 宵</u> 寅 在 在 關 心 您 健 康 的 好 厝 邊

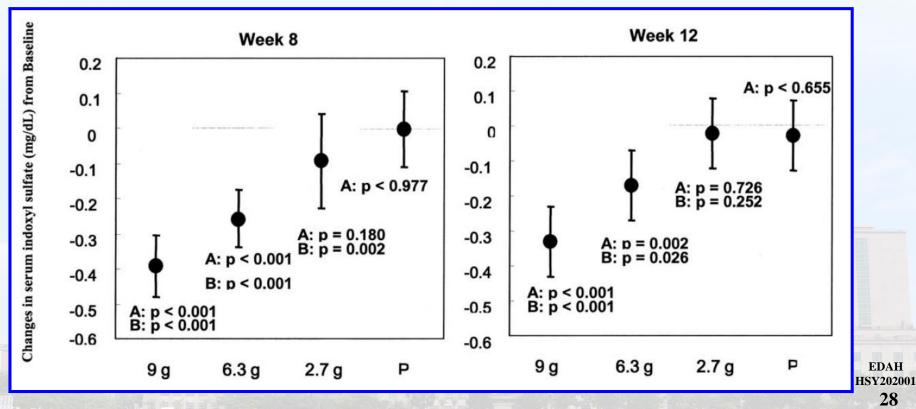
- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE Basic and animal studies of ABC-DAE

AST-120 (Kremezin®)


- Oral spherical carbon adsorbent, black, odorless, water insoluble, spherical particles, 0.2 - 0.4 mm in diameter, extensive surface area (1600 m²/g)
- Composed mainly of carbon (approximately 96%)
- Compared to activated charcoal
 - similar or superior adsorption ability for certain acidic and basic organic compounds accumulated in renal failure
 - lower adsorption ability for digestive enzymes
 - superior adsorption ability for the precursors of IS/PCS, thus reduce IS/PCS accumulated in serum

EDAH HSY202001 26

Expected action (AST-120)

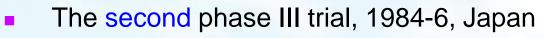

Yamaguchi J. Nephron. 2017;135(3):201-06.

Dose-dependent IS reduction


- A multicenter, randomized, double-blind,placebocontrolled study in USA, 2003-4
- 164 patients taking AST-120, sCr: 3.0-6.0 mg/dl.

Schulman G. Am J Kidney Dis. 2006;47:565–577.

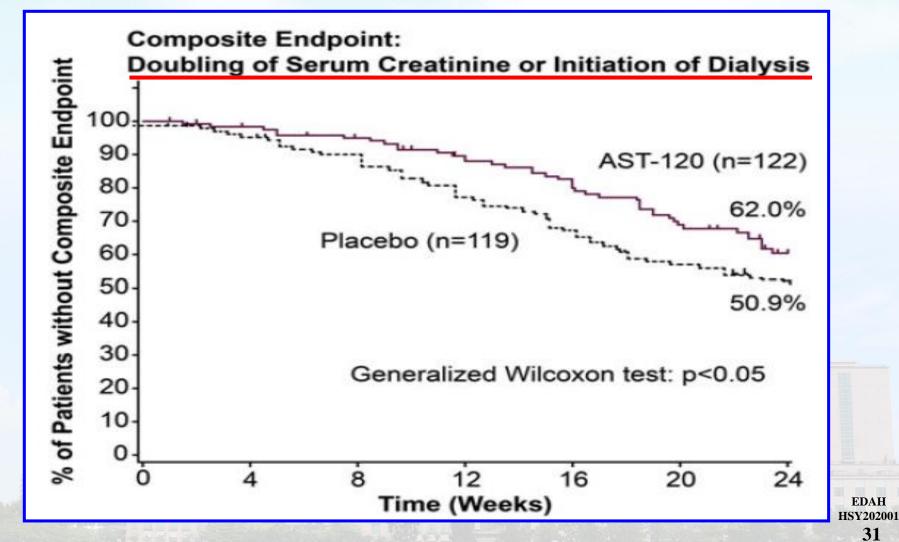
<u> 宵</u> 宵 在 在 關 心 您 健 康 的 好 厝 邊



- 156 patients with CKD at 25 hospitals, sCr 5-8mg/dL.
- AST-120 or a placebo for 24weeks, in addition to conventional Tx
- 3.6 g/day for the first 4weeks, and then 5.4 g/day for 4 weeks, and then up to 7.2 g/day at the investigator's discretion.
- After 24weeks, there were no differences with regard to
 - hemodialysis score, final sCr improvement and final Hct improvement.
- Post-hoc analysis, focused on the patients with fast progression
 - 25 in the AST-120 group and 28 in the placebo group
 - a significant attenuation in the 1/Cr slope over the course in the AST-120 group
 - suggest assess the efficacy of AST-120 in patients with fastprogressing CKD

Koide K. Clin Eval. 1987;15:487-525.

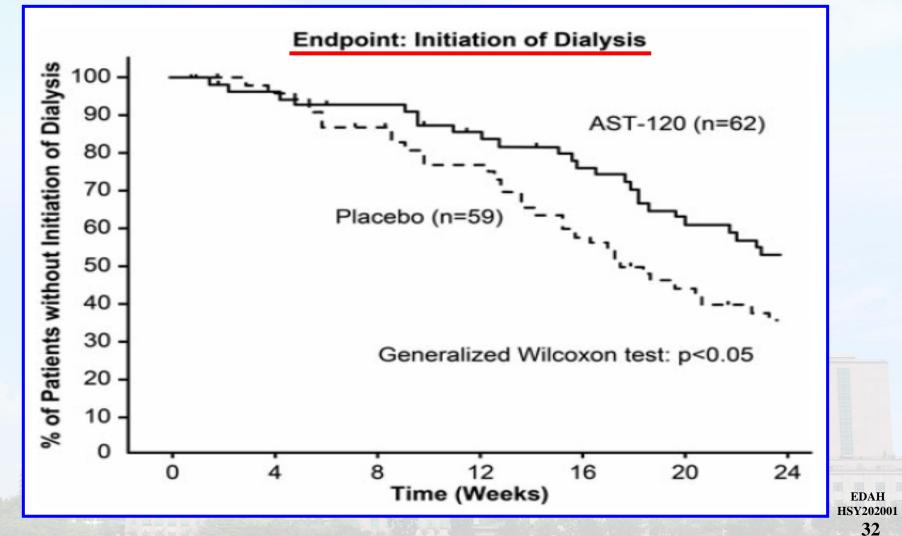
HSY202001 29


- Add a 24week observation period prior to the 24week double-blind treatment phase
- Enrollment : sCr 5-8mg/dL, as well as an increase in sCr of 1.2 mg/dL during the 24week observation period
- 244 patients with CKD from 41 hospitals
- Receive AST-120 or a placebo in addition to conventional Tx.
- AST 4.2 g/day for the first 2weeks, then increased to 6.0 g/day.
- Results showed that AST-120 group
 - improve in the change of 1/Cr (43% vs. 24%, p<0.01)</p>
 - improve in uremic symptoms (22% vs. 8%, p<0.01)</p>
 - No significant difference in overall safety rating and adverse events

Koide K, Clin Eval. 1987;15: 527-564

<u> 宵</u> 實 在 在 關 心 您 健 康 的 好 厝 邊

HSY202001 30



Koide K, Clin Eval. 1987;15: 527-564

實 實 在 在 關 心 您 健 康 的 好 **厝** 邊

Koide K, Clin Eval. 1987;15: 527-564

實 實 在 在 關 心 您 健 康 的 好 **厝** 邊

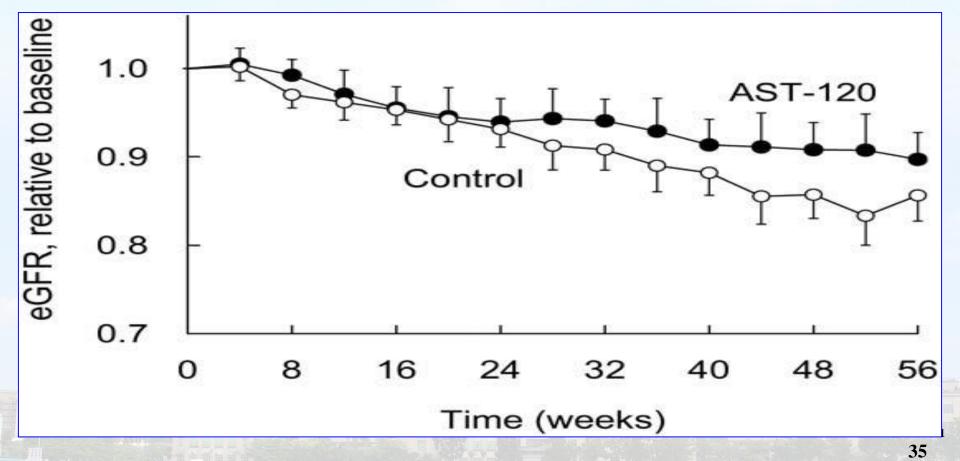
AST-120 (Kremezin®)

- Based on phase III trial, AST-120 was approved in Japan in 1991
 - For treating uremic symptoms
 - Prolonging the time to the initiation of dialysis in CKD patients
- AST-120 was approved upon post-marketing reexamination in Japan in 1998
- Approved subsequently
 - Korea, 2005
 - Taiwan, 2007
 - 緊急治療藥物或化學品中毒之病人
 - 吸附干擾胃腸道的細菌性毒素、消化性毒素及其他有機性廢物、
 解除腸內滯留氣體及有關症狀
 - Philippines, 2010

EDAH HSY202001 33

CAP-KD study

- Carbonaceous oral Adsorbent's effects on Progression of CKD (CAP-KD)
- 75 medical facilities in Japan, 2004-7
- 460 patients with CKD (Cr< 5.0mg/dL, not undergoing dialysis).</p>
- 2 groups
 - Intervention: low-protein diet, anti-HT, and AST-120 (6 g/d)
 - Control: low-protein diet and anti-HT
- Results:
 - 1 year primary end-point events and event-free survival: no difference
 - eGFR decreased more in the control group than in the AST-120 group (0.15 versus 0.12 mL/min/y; P = 0.001).
- Conclusion:
 - AST-120 did not slow the progression of kidney disease in patients with moderate to severe CKD during 1 year

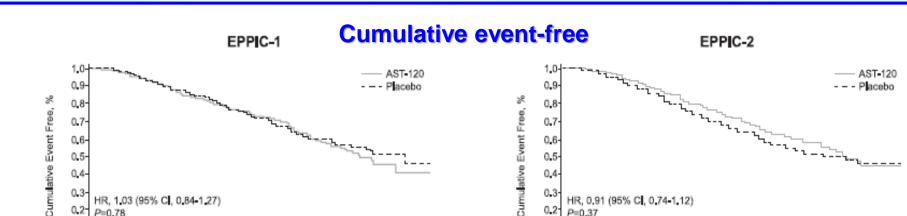

HSY202001 34

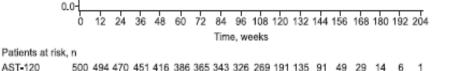
CAP-KD study

Estimated GFR decreased more in the control group than in the AST-120 group (0.15 versus 0.12 mL/min/y; P = 0.001).

Akizawa t. Am J Kidney Dis 2009: 54:459-467.

<u> 宵</u> 宵 在 在 關 心 您 健 康 的 好 厝 邊


EPPIC-1 & 2 study



- Evaluating Prevention of Progression In CKD (EPPIC) trial
- Multinational, randomized, double-blind, placebo-controlled EPPIC-1 and EPPIC-2 trials in North America, Latin America and Europe, 2007-12
- 2035 CKD patients, sCr at screening, 1.5-5.0 mg/dL
- HT patients should take ACEi/ARB unless contraindicated
- AST-120 (9 g/day) vs. placebo, in 96 weeks
 - No difference in primary endpoint: a composite of dialysis initiation, kidney transplantation and sCr doubling (in each trial or pooled analysis)
 - A significant difference in the change of eGFR from baseline, p=0.04

Schulman G. J Am Soc Nephrol. 2015;26:1732–1746

<u> 宵</u> 宵 在 在 關 心 您 健 康 的 好 厝 邊

502 500 472 441 416 392 373 342 318 263 205 142 93 63

0.2

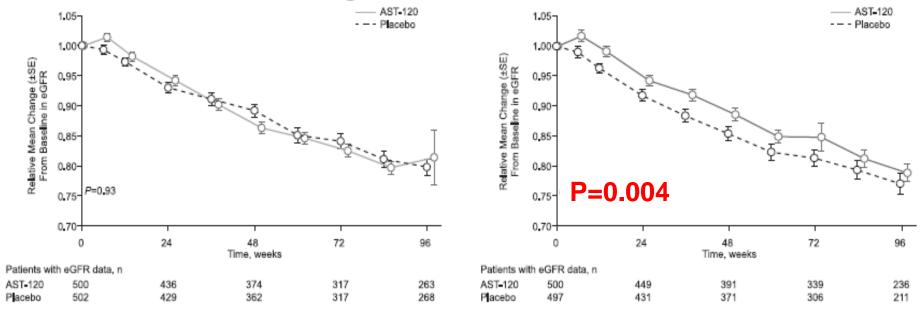
0.1

Pacebo

P=0.78

0.0	0-																		
	7	42	24	26	40	60	72	0.4	90	100	120	122	444	156	160	100	102	204	
	0	12	24	30	40	00	12	04	30	100	120	132	144	100	100	100	192	204	
								Tim	e, we	eks									
Patients at risk,	n																		
AST-120	500	496	483	461	433	402	372	348	285	222	186	141	103	73	48	23	8	3	

497 483 457 435 404 366 335 303 254 196 159 116 83


Change of eGFR from baseline

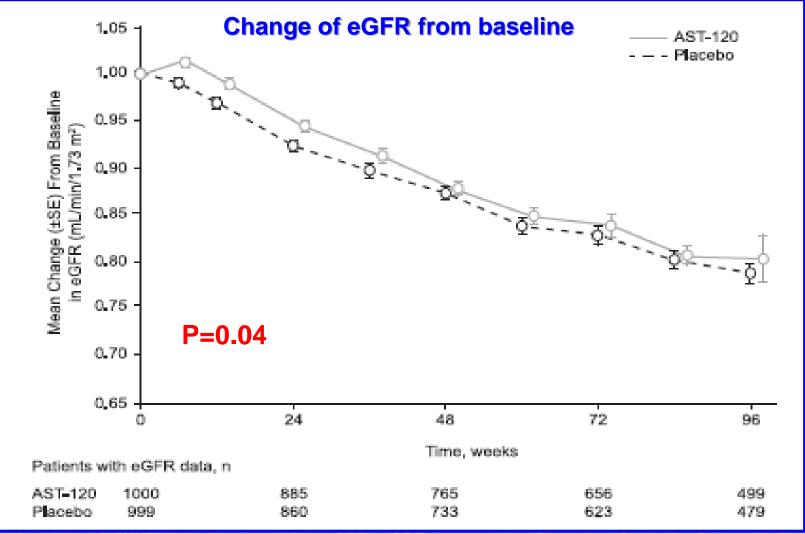
Pacebo

38 19 8 0.2

0.1

P=0.37

Schulman G. J Am Soc Nephrol. 2015;26:1732-1746


37

58 40 20

Pooled EPPIC-1 & 2

Schulman G. J Am Soc Nephrol. 2015;26:1732–1746

實 實 在 在 關 心 您 健 康 的 好 厝 邊

EDAH

HSY202001 38

Post hoc analysis

- Focus on CKD progression and to determine the risk factors for the primary endpoint in the EPPIC I & II trial
- Placebo population analysis
 - baseline UPCR >= 1.0 and hematuria were independent risk factors for event occurrence and eGFR lowering
- High risk patients analysis (UPCR >= 1.0 and hematuria)
 - Reduced primary endpoint in AST-120 group, if ACEi /ARB were administered (HR:0.74, p=0.026)
 - Smaller GFR changes from baseline in AST-120 group (P = 0.035).

Schulman G. Clin Exp Nephrol, 2018;22:299–308.

HSY202001 **39**

Post hoc analysis

ACEI/ARB	Hematuria	UP/UCr	A	ST-12	0	F	laceb	00	HR (95% (CI) log scale	HR (95%CI)	P-value
			N	n	%	Ν	n	%	0.2	1	5	
ITT (censored at last contact)			1000	350	35.0	999	360	36.0	Favors	Favors	0.97 (0.83,1.12)	0.64
		All	303	113	37.3	291	139	47.8		Hel	0.74 (0.57,0.95)	0.02
	Positive	≥1.0	238	103	43.3	236	124	52.5		H - -	0.74 (0.56,0.96)	0.03
Yes		<1.0	65	10	15.4	55	15	27.3	, <u> </u>	●	0.58 (0.25,1.36)	0.21
les		All	541	172	31.8	546	156	28.6		H e ri	1.11 (0.89,1.38)	0.36
	Negative	≥1.0	372	141	37.9	354	130	36.7		н ф н	1.01 (0.79,1.29)	0.94
		<1.0	169	31	18.3	192	26	13.5		⊢⊷	1.36 (0.78,2.37)	0.27
		All	53	31	58.5	51	26	51.0		⊢ ●1	1.57 (0.85,2.90)	0.15
	Positive	≥1.0	41	23	56.1	41	23	56.1			1.95 (0.94,4.05)	0.07
No		<1.0	12	8	66.7	10	3	30.0		- • '	0.80 (0.16,4.08)	0.79
No	Negative	Ali	101	34	33.7	106	37	34.9		H H	0.96 (0.59,1.56)	0.87
		≥1.0	64	28	43.8	74	30	40.5		⊢	1.33 (0.76,2.34)	0.32
		<1.0	37	6	16.2	32	7	21.9	⊢		0.33 (0.08,1.47)	0.15

Schulman G. Clin Exp Nephrol, 2018;22:299–308.

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE Basic and animal studies of ABC-DAE

7202001

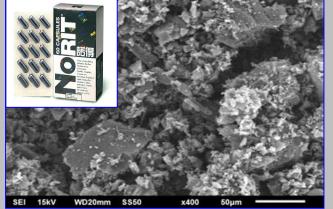
Charcoal, activated or not

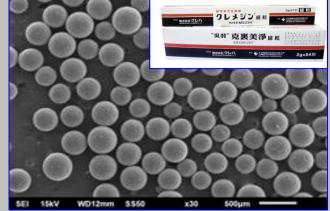
Charcoal

- a lightweight porous black carbon residue produced by removing water and volatile constituents from animal and plant materials
- produced by slow pyrolysis (熱解), heating in the absence of oxygen

Activated Charcoal

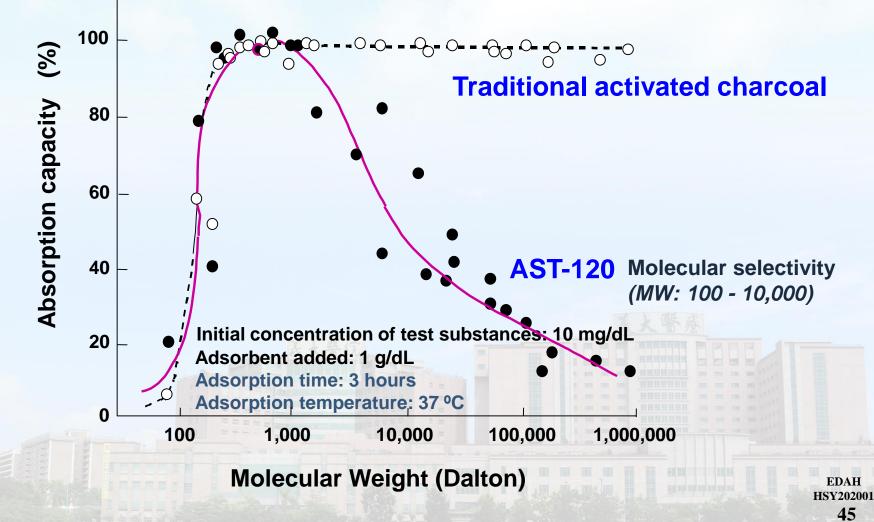
- created when ordinary charcoal is heated to a very high temperature
- the elements and compounds bound with the carbon atoms are removed, and all the binding sites for carbon are "free"
- a lot of activated carbon surface carbonyl groups (C=O), carboxyl groups (COOH), phenolic hydroxyl groups and lactone groups (C-O-C), so it can adsorb organic matters
- much more porous and absorptive than ordinary charcoal, has a number of medicinal and industrial uses


<u> </u>	E-DA HEALINCARE GROOP			
	Characteristic	Charcoal	Activated charcoal	
	Nature	Carbon residue of dehydrated, burned organic material	Carbon residue of dehydrated, burned organic material that has been heated to a very high temperature	
	Porosity	More porous than most other forms of carbon	Even more porous than charcoal	
	Temperature	Always involves high temperatures	Involves even higher temperatures than charcoal	
	Uses	Metallurgy, cooking, and filtering	Medicine and removal of toxins	
			DB Difference Between.net	EDAH HSY202001 43



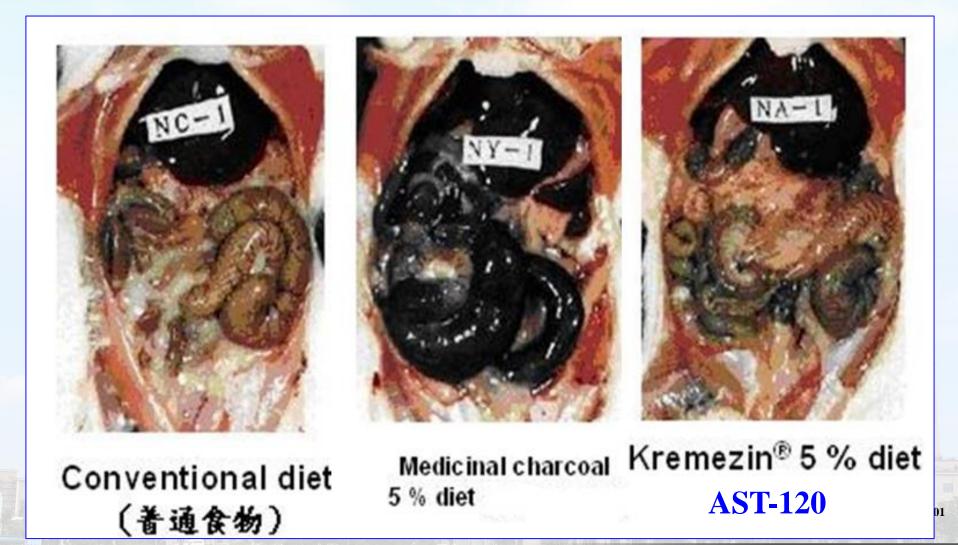
Activated charcoal

Product	Norit (諾得膠囊)	Kremezin (AST-120)
Shape	Irregular particles	Spherical
Adsorption	Non-selective	Selective
Material	Peat, Wood, Lignite, Coal, Coconut shells, Olive pits	Asphalt (瀝青)



<u> 宵 宵 在 在 關 心 您 健 康 的 好 厝 邊</u>

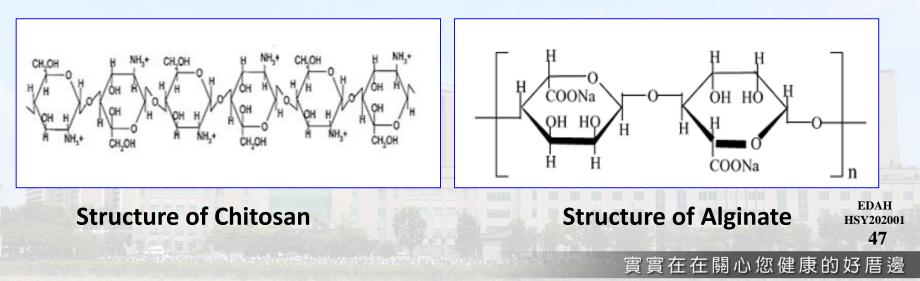
Selectivity of AST-120



Honda Y, et al., Clinical Report. 28(10): 2873-2811, 1994

實實在在關心您健康的好厝邊

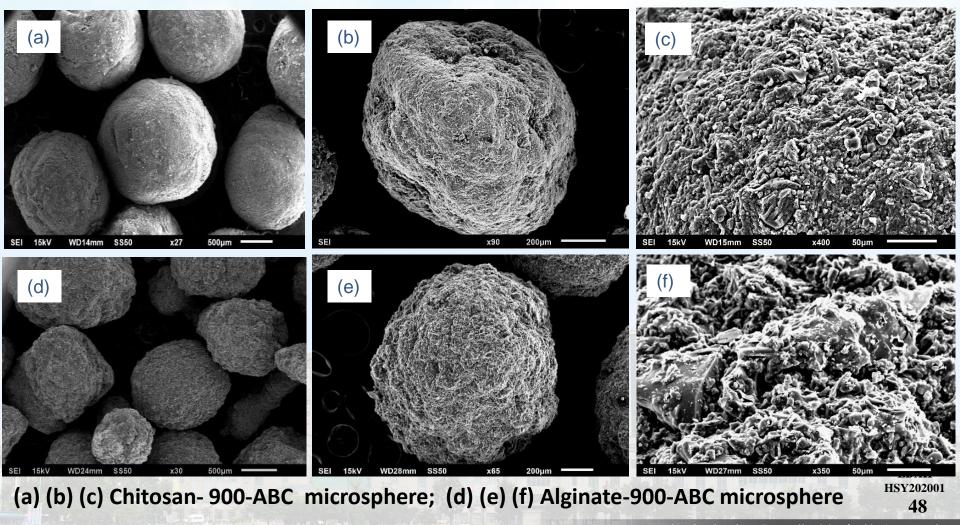
AST-120 reduce adhesion



<u> 宵 宵 在 在 關 心 您 健 康 的 好 厝 邊</u>

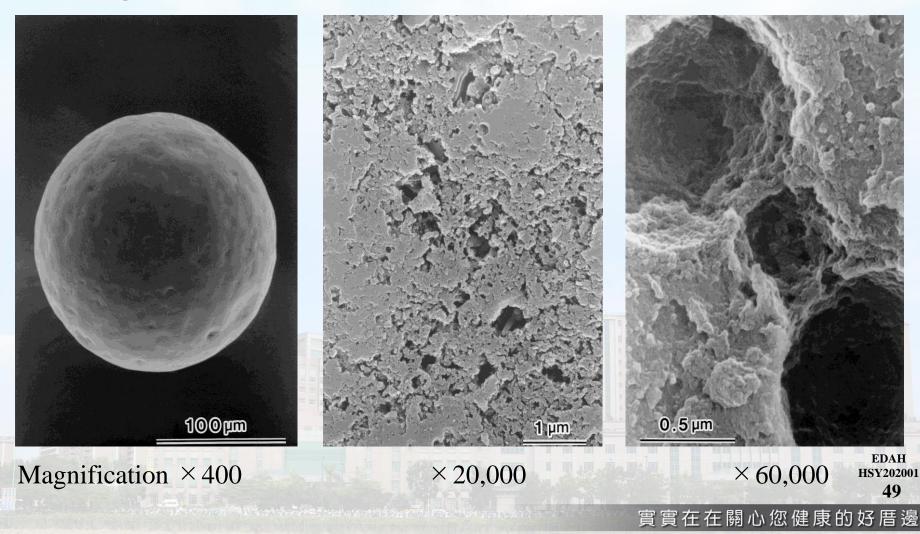
Activated bamboo charcoal

- Activated bamboo charcoal (ABC) by 900°C (900-ABC)
- Dispersed Absorptive Elements (DAE) technology
 - cladding the ABC to be microsphere with Chitosan (幾丁聚 醣) or Alginate (海藻酸鈉)
 - both have good biocompatibility, and easy to form spherical particles
 - make the ABC not adhere to the gastrointestinal tract



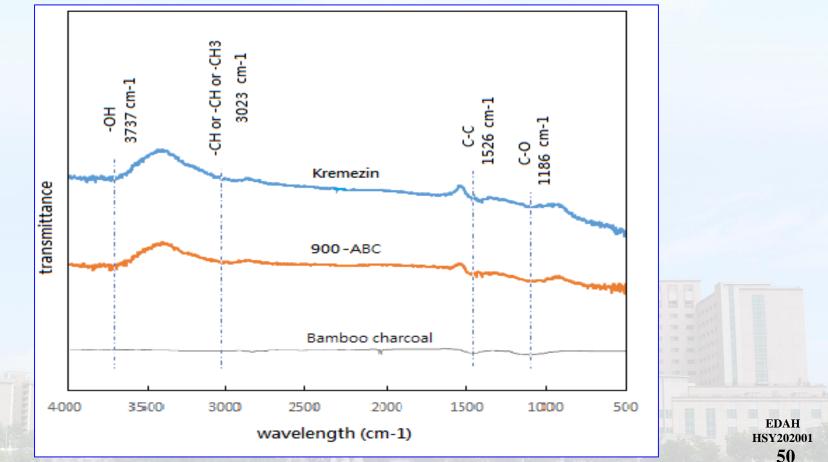
Chitosan- and Alginate-900-ABC

Scanning Electron Microscope


<u> 宵</u> 實 在 在 關 心 您 健 康 的 好 厝 邊

AST-120 microsphere

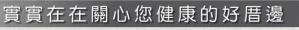
Scanning Electron Microscope



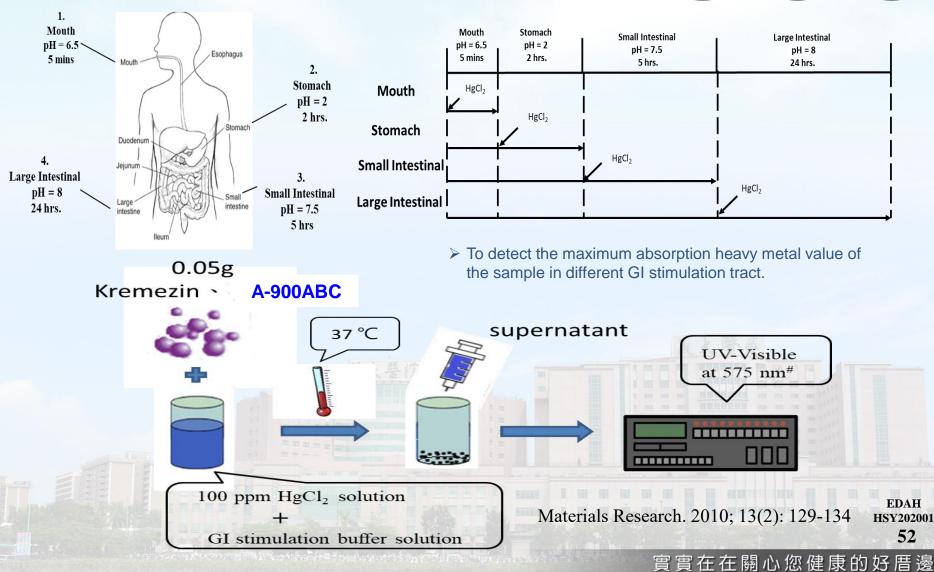
Fourier-transform infrared spectroscopy (FTIR)

FTIR spectra of

Bamboo charcoal, 900 °C Activated bamboo charcoal, and Kremezin

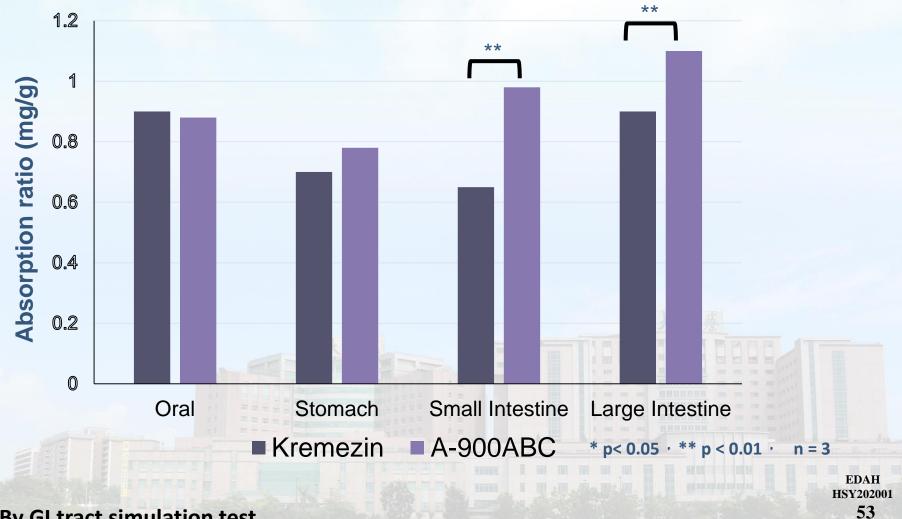

實 實 在 在 關 心 您 健 **康** 的 好 厝 邊

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE
 - **Basic and animal studies of ABC-DAE**

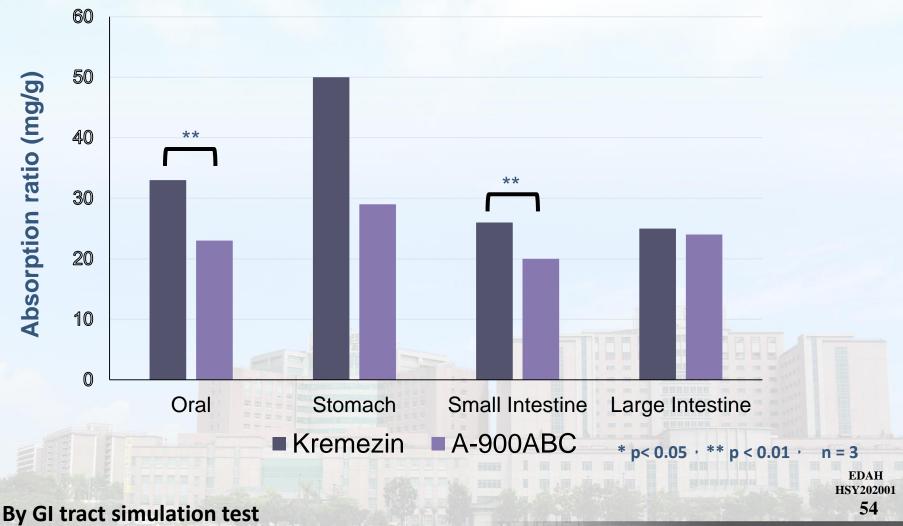


Y202001

GI simulation study

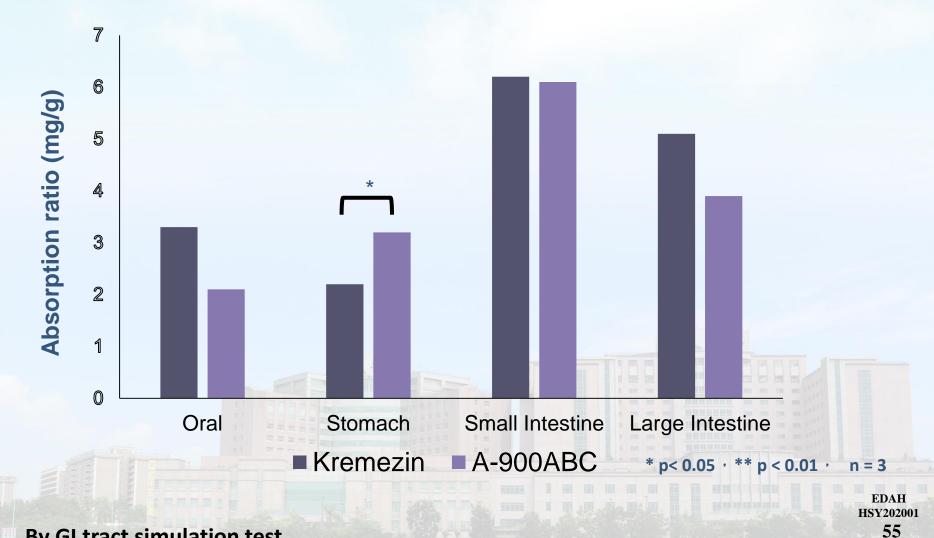


Heavy Metal (Pb²⁺)


By GI tract simulation test

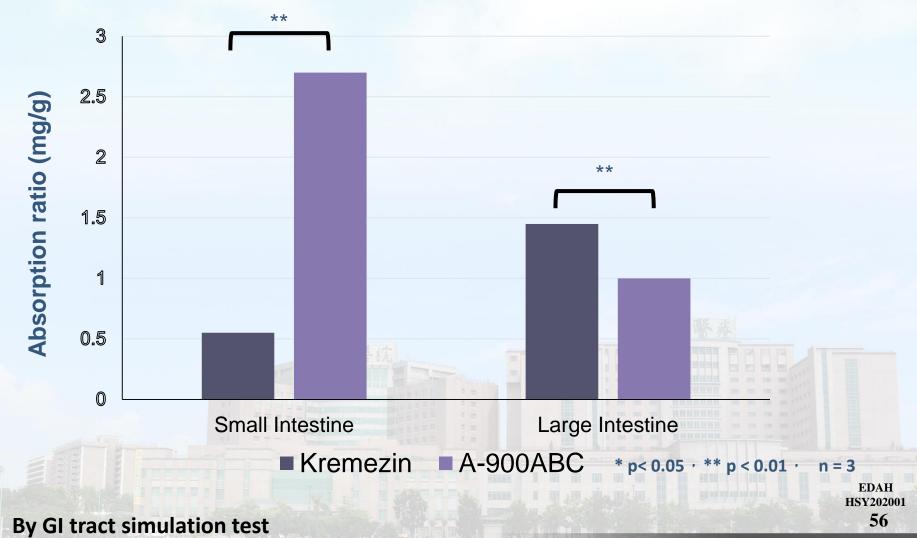
<u> 宵 宵 在 在 關 心 您 健 康 的 好 厝 邊</u>

Heavy Metal (Al³⁺)

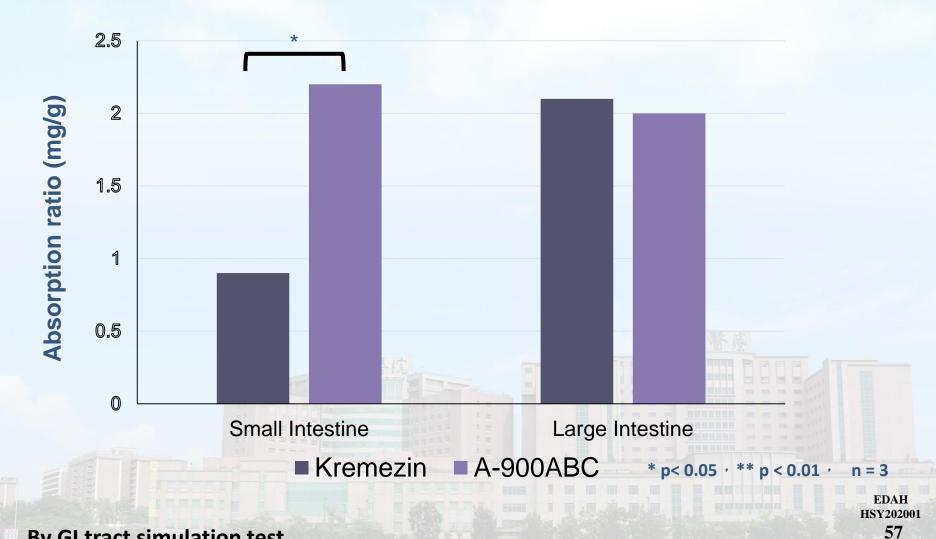


宵 實 在 在 關 心 您 健 **康** 的 好 厝 邊

Heavy Metal (Hg²⁺)


By GI tract simulation test

<u> 宵 宵 在 在 關 心 您 健 康 的 好 厝 邊</u>



實 實 在 在 關 心 您 健 康 的 好 **厝** 邊

By GI tract simulation test

<u></u> 實 在 在 關 心 您 健 康 的 好 厝 邊

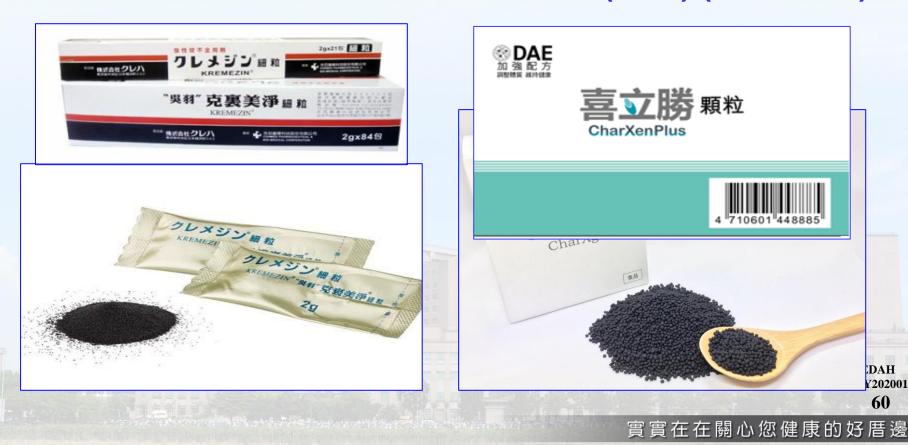
Absorption of enzymes

Iower adsorption ability for digestive enzymes

	Absorption (%)						
Test Enzyme	Kremezin (n=4)	A-900ABC(DAE) (n=4)	藥用活性炭 (日本藥典)				
α-Amylase	16.7±9.8	18.2±3.2	>99				
Pepsin	21±7.5	7.7±6.7	>99				
Lipase	40.8±2.6	37.2±0.8	>99				
Trypsin	33±6.4	36.2±9.3	>99				

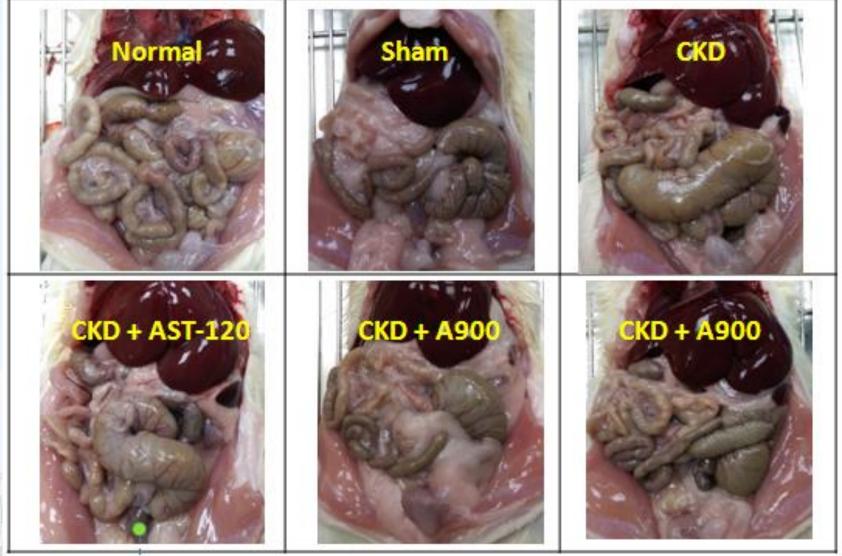
EDAH HSY202001 59

<u> 實</u> 實 在 在 關 心 您 健 康 的 好 厝 邊



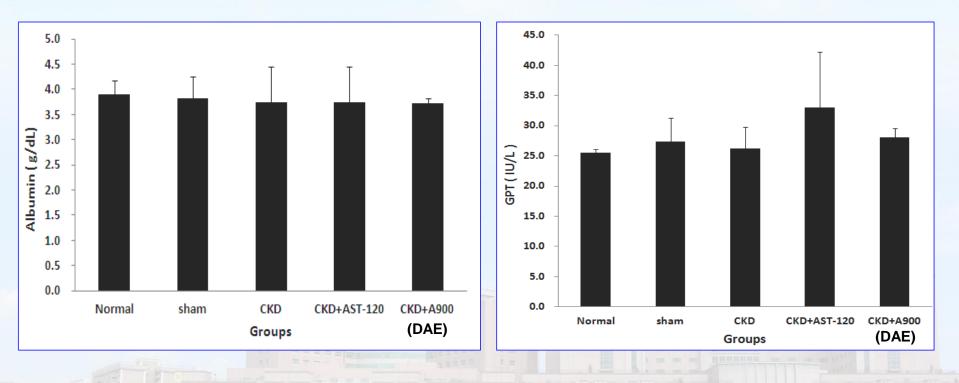
A-900ABC(DAE) (CharXen[®])

5/6 subtotal nephrectomy rat CKD model


AST-120 (Kremezin®)

GI tract adhesion, 24 hrs

EDAH HSY202001 61

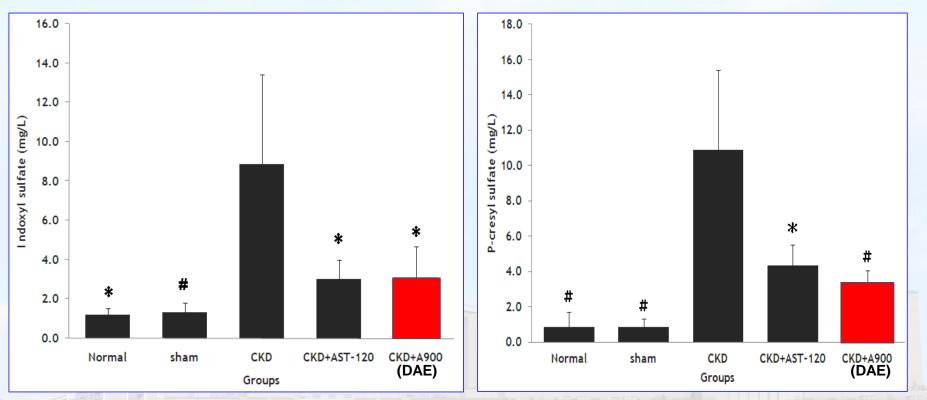

N = 5

Albumin and GPT

Albumin

62 實實在在關心您健康的好厝邊

EDAH HSY202001



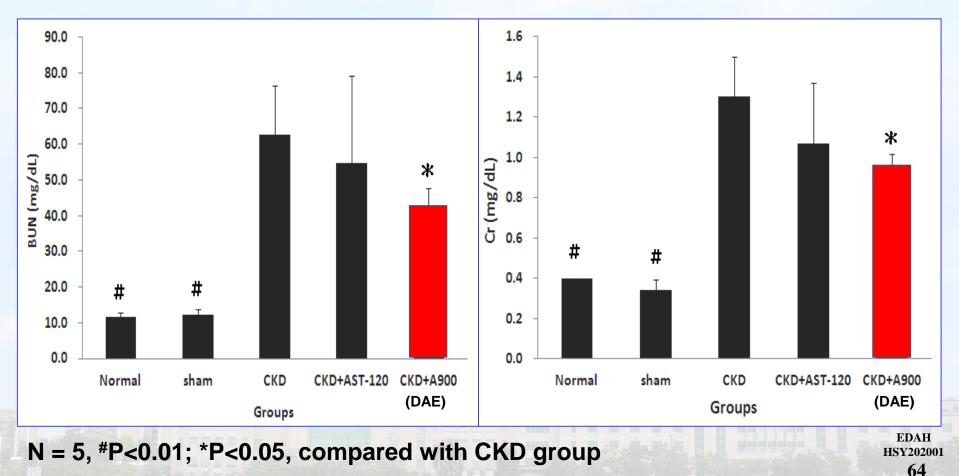
IS

PCS

N = 5, #P<0.01; *P<0.05, compared with CKD group

EDAH HSY202001 63

<u> 宵</u> 寅 在 在 關 心 您 健 康 的 好 厝 邊



BUN and Creatinine

Cr

BUN

- CKD and ESRD epidemiology
- Uremic toxins vs. CKD
- The effectiveness of AST-120 (Kremezin®)
- Comparison of uremic toxin adsorbents
 - Traditional activated charcoal
 - AST-120 (Kremezin®)
 - Activated bamboo charcoal (ABC) by DAE
 - **Basic and animal studies of ABC-DAE**
 - Take home message

SY202001

Take home message

- Extremely high CKD and ESRD prevalence in Taiwan
- Uremic toxins contribute to CKD progression
- Oral absorbents indeed reduce uremic toxins
- AST-120 (Kremezin)
 - Postpone the initiation of dialysis and reduce uremic symptoms
 - slow GFR declining, statistically or clinically significant ? in selective patient group or selective situation ?
- A-900ABC (DAE), promising results in animal studies, but lack large-scale human study
- Multifactorial risk factors and etiologies for CKD
 Consider add-on treatment with uremic toxin absorbents

EDAH HSY202001 66

富在在關心您健康的好厝邊

Thanks for Your Attention !

