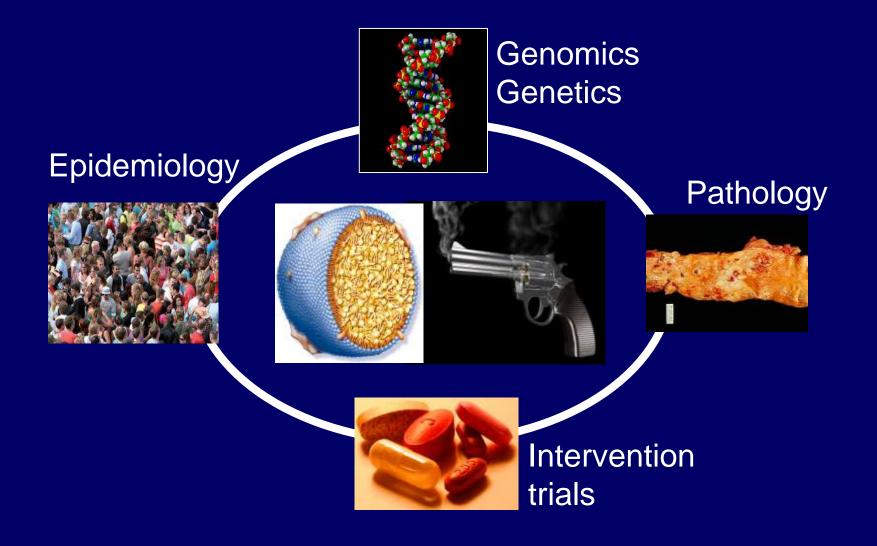


The Legacy Effect of Primary Prevention

臺北榮總教學部/心臟內科 國立陽明大學副教授 黃金洲醫師 2019-3-10

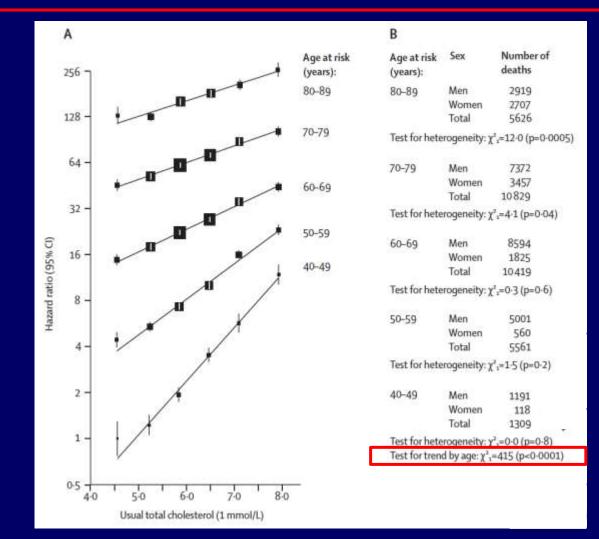
OUTLINE


Role of LDL in Cardiovascular Disease

- Evidence Base for CVD Primary Prevention: Legacy Effect
- Strategies for Primary Prevention

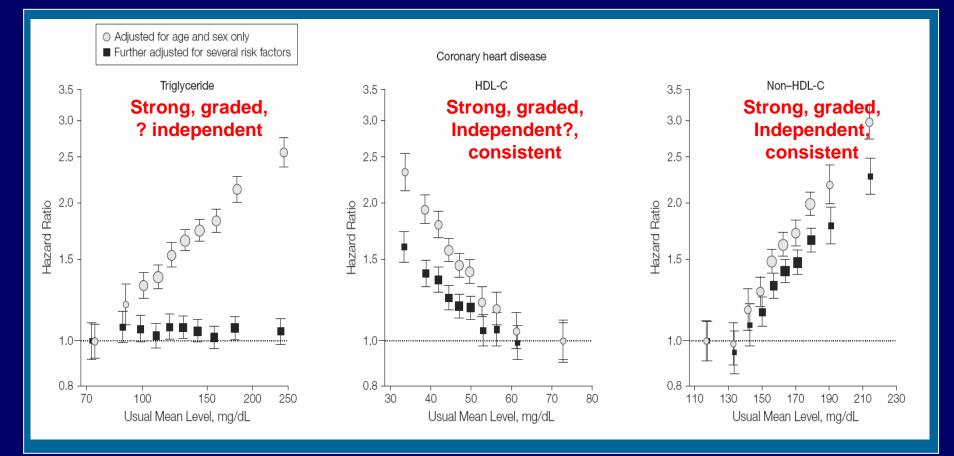
Role of LDL in Cardiovascular Disease

LDL as the primary causative factor and treatment target


LDL and atherosclerosis A coalescence of evidence

Causal role of LDL in atherosclerosis

- Evidence from epidemiology and pathology.
- Evidence from intervention trials and genetic studies.


Age, cholesterol and CHD risk Prospective Studies Collaboration

Prospective Studies Collaboration Lancet (2007) 370;1829-39

Emerging Risk Factors Collaboration Plasma lipids and incident CHD

302,430 subjects; 2.79 million pt-yrs; 8857 MIs; 3928 strokes; 68 studies

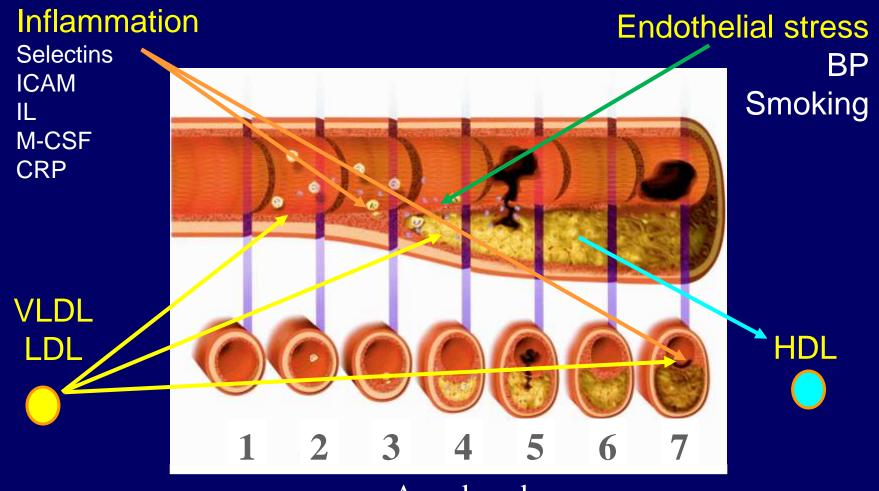
Danesh et al (2009) JAMA 302:1993-2000

Role of LDL in atherogenesis Pathological plausibility

Cellular remodelling Release of bio-active lipids

Extracellular pathology

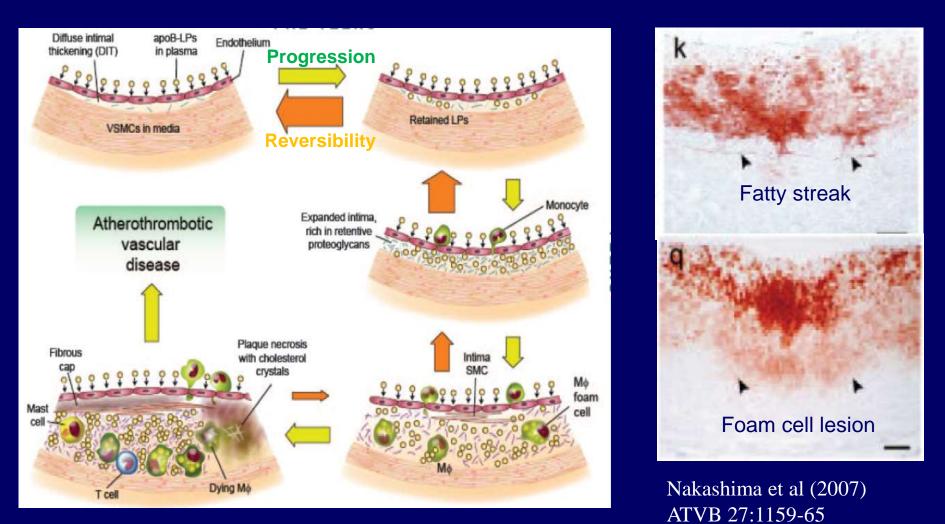
Lipoprotein retention Deposits early microand later macrocholesterol crystals.



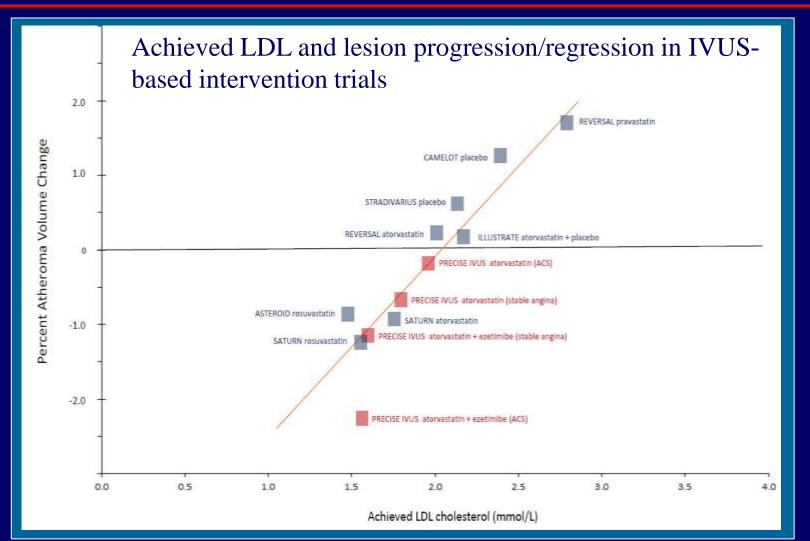
Innate immunity Initiates localised inflammation. Macrophage recruitment. Intracellular cholesterol accumulation. Necrosis

Auto-immunity (apoB) Adaptive immunity

See Libby, Ridker, Hansson. Nature (2011); 473:317-325


Pathogenesis of atherosclerosis A decades-long disease course

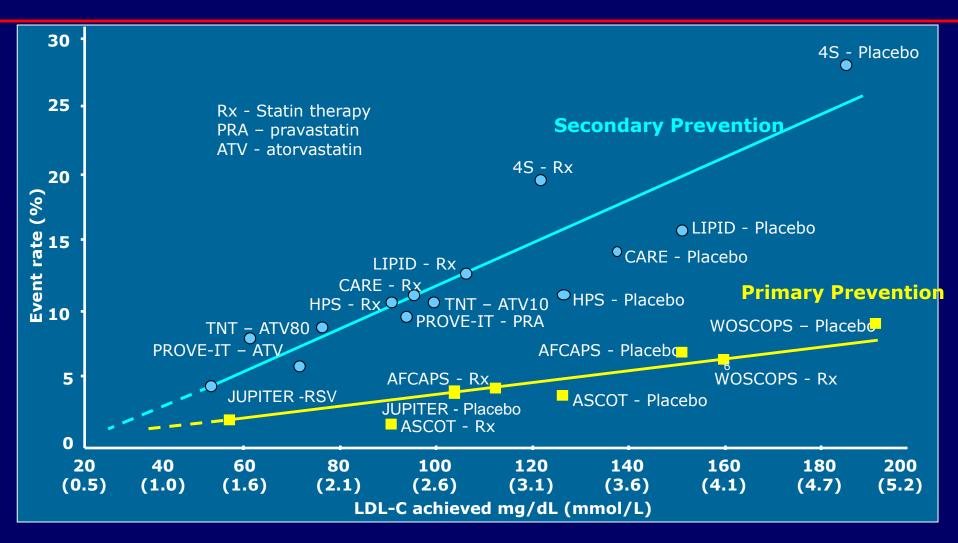
Age decade Libby (2


Libby (2001) Circulation 104:365

Lipoprotein retention to foam cell formation

Tabas et al (2007) Circulation 116:1832-44

LDL and size of coronary lesions



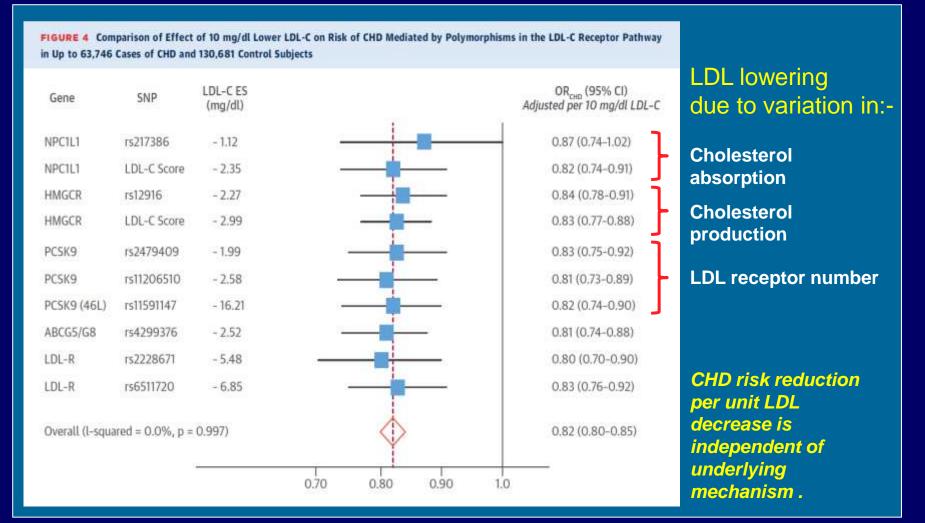
EAS Consensus Panel, Europ Heart J. (2017);38:2459-72

Causal role of LDL in atherosclerosis

- Evidence from epidemiology and pathology.
- Evidence from intervention trials and genetic studies.

Association of LDL cholesterol with CHD risk in statin trials

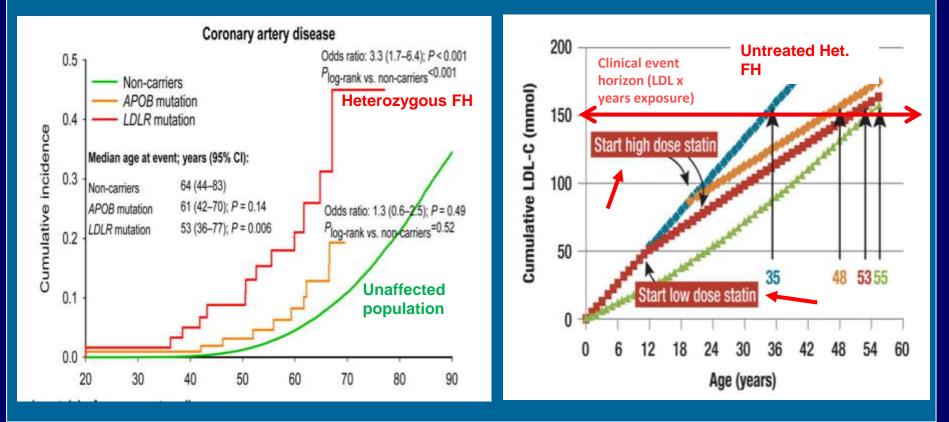
Adapted from Rosensen RS. Exp Opin Emerg Drugs 2004;9(2):269-279 LaRosa JC et al. N Engl J Med 2005;352:e-version


Lessons from nature Common genetic variation and CHD risk

Analysis of genes regulating LDL cholesterol and association with CHD risk

Nearby Gene	SNP	Sample Size (N)			Effect Size	e (95% CI) mg/dl			OR (95% CI)
Jene	anr				I	ngiai			
SORT1	rs599839 (¹³⁻¹⁹)	108,332			-0.16 (-0.17, -0.15)	-6.00 (-6.37, -5.64)		H	0.88 (0.86-0.90)
	rs646776 (5.11.15,18)	120,309			-0.15 (-0.16, -0.14)	-5.71 (-6.07, -5.34)		∎_	0.88 (0.86-0.91)
PCSK9	rs11206510 (14.16,18-28)	70,710		•	-0.08 (-0.09, -0.06)	-2.93 (-3.47, -2.39)		_	0.94 (0.92-0.96)
	rs11591147 (8.13.18.19.21-34)	149,372	-		-0.43 (-0.46, -0.41)	-16.68 (-17.66, -15.71)	~ · · · ·		0.72 (0.62-0.84)
DLR	rs6511720 (5.13.18,19.25)	137,818		•	-0.19 (-0.21, -0.18)	-7.50 (-7.98, -7.03)			0.87 (0.83-0.92)
	rs2228671 (8.15.17,18.25.26)	61,865		٠	-0.15 (-0.16, -0.13)	-5.70 (-6.30, -5.11)			0.89 (0.86-0.93)
HMGCR	rs12916 6.13.1820	130,114			-0.07 (-0.08, -0.06)	-2.63 (-2.95, -2.32)			- 0.94 (0.90-0.98)
ABCG8	rs4299376 (5.16.18,22)	116,828			-0.07 (-0.08, -0.06)	-2.86 (-3.22, -2.51)		-	0.94 (0.92-0.96)
APOE	rs4420638 (5.13,14,18,27)	126,788			-0.18 (-0.20, -0.17)	-7.10 (-7.56, -6.65)		-	0.86 (0.83-0.89)
	= 99.7%, p < 0.001)								

Ference et al. JACC. 2012;60:2631-9


Causal role of LDL – evidence from common inherited variants

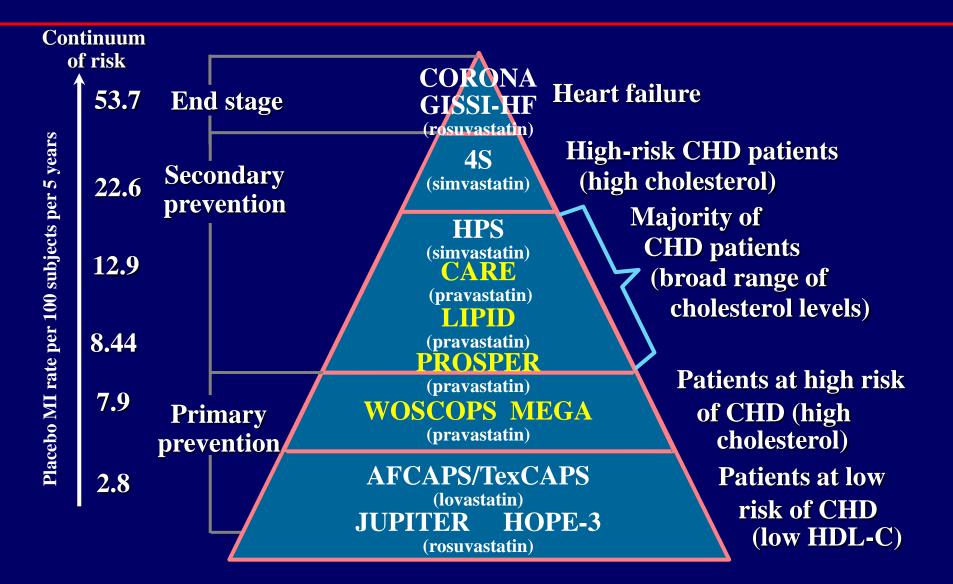
Ference et al JACC (2015) 65; 12552-61

Causal role of LDL – evidence from severe genetic variants

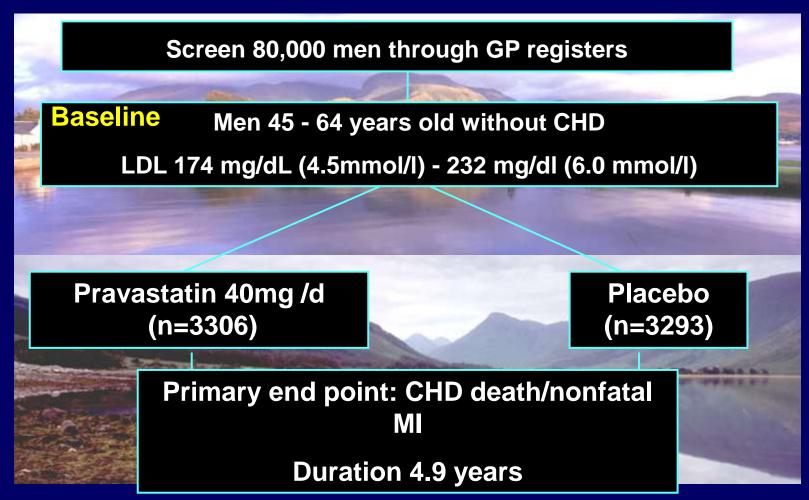
Cumulative LDL exposure and CHD risk in familial hypercholesterolemia

Benn et al. *Europ. Heart J.* 2016;37:1384-94 Weigman et al. *Europ. Heart J.* 2015;36:2425-37

Brief Summary #1

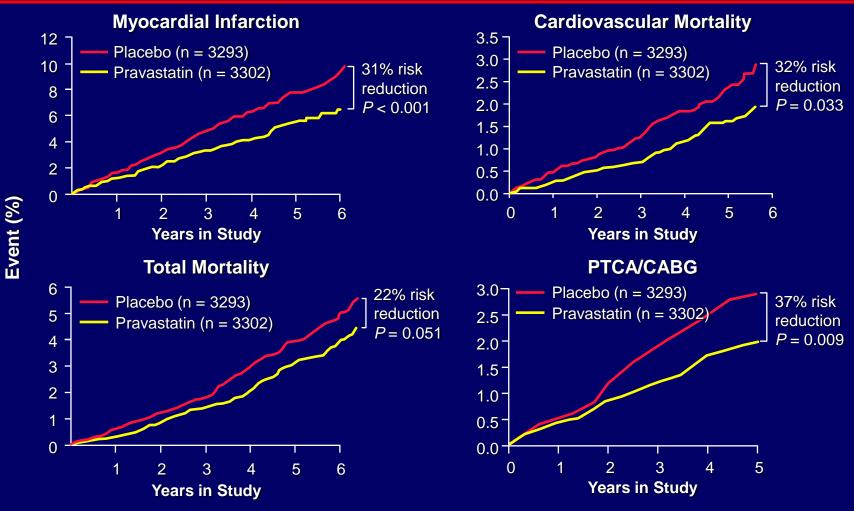

- LDL satisfies key criteria as the causative agent in atherosclerosis.
- LDL contributes to the pathogenesis of atherosclerosis over the decades long development of the disease
- LDL cholesterol is associated with the size of lesions and ongoing risk of CHD.
- Lifelong exposure LDLc x years is an important determinant of risk. Exposure can be controlled most effectively by early intervention

Evidence Base for CVD Primary Prevention


Understanding the Lifetime Benefits of LDL Lowering Legacy Benefit Understanding the lifetime benefits of statin treatment

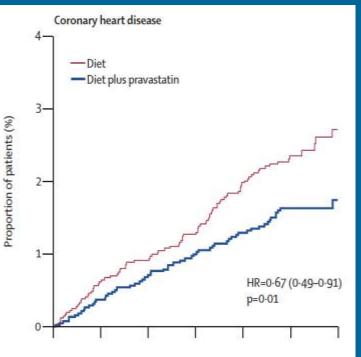
- CVD primary prevention key lessons from landmark trials.
- WOSCOPS 20-year experience with statin treatment.
- Adherence in primary prevention efficacy, safety and tolerability.

Placebo - Statin outcome trials



West of Scotland Coronary Prevention Study - Trial design

Shepherd et al. *N Engl J Med.* 1995;333:1301-7.


WOSCOPS: Early Event Reductions With Pravastatin

Shepherd et al. *N Engl J Med.* 1995;333:1301-1307.

Primary prevention of CVD with pravastatin in Japan – MEGA study

Impact of low dose statin therapy (10-20mg pravastatin) on CVD in asymptomatic Japanese subjects with raised cholesterol, 5.69– 6.08 mmol/l

Design – Prospective, randomized, open-label, blinded trial; 7832 subjects (69% women); baseline LDLc – 4.05mmol/l. LDL decrease in active treatment group was 18.0%

	5 years (35 962 person-years)				End of study (41 195 person-years)			
	Diet group	Diet plus pravastatin group	HR (95% CI)	p value	Diet group	Diet plus pravastatin group	HR (95% CI)	p value
Coronary heart disease	85 (4-8)	57 (3-3)	0.70 (0.50-0.97)	0.03	101 (5-0)	66 (3-3)	0-67 (0-49-0-91)	0-01
Number at risk*	2476	2434			223	249		
Coronary heart disease plus cerebral infarction	127 (7-1)	81 (4-7)	0-66 (0-50-0-87)	0.003	144 (7-1)	98 (5-0)	0.70 (0.54-0.90)	0-005
Number at risk*	2452	2422			223	243		
Stroke	61(34)	38 (2-2)	0-65 (0-43-0-97)	0-03	62 (3-0)	50 (2-5)	0-83 (0-57-1-21)	0.33
Number at risk*	2489	2452			233	248		
Total mortality	66 (3-6)	43 (2-4)	0-68 (0-46-1-00)	0-048	79 (3-8)	55 (2.7)	0.72 (0.51-1.01)	0-055
Number at risk*	2604	2545			237	249		

Table 3: Major endpoints at 5 years and end of study

Heart Outcome Prevention Evaluation-3 Study design

Primary prevention in subjects with intermediate risk

2 x 2 factorial design – Age >55y men; >65y (>60y) women + 1(2) risk factor

Dual placebo n=3168	Statin + BP placebo n= 3181
LDLc 128 mg/dl BP 138/82 mmHg	LDLc 26.5% 🕹 vs placebo
BP Rx + statin placebo n= 317	BP Rx + statin n= 3180
BP 6/3 mmHg∳ vs placebo	LDLc 26.5%↓ vs placebo BP 6/3 mmHg↓ vs placebo

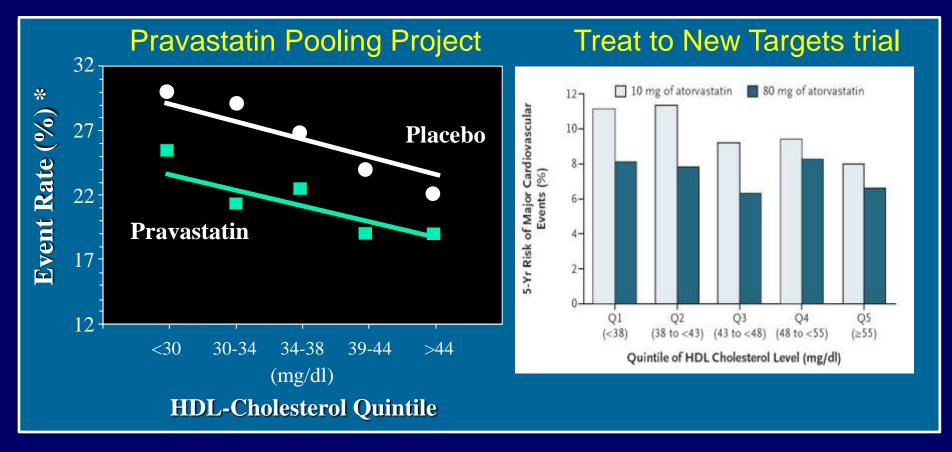
Subject ethnicity – 29% Chinese, 27% Hispanic, 20% White, 14.6% South Asian Age 65.8 y, 46.3% female

Yusuf et al New Eng J Med (2016) 374;2021-31

Lonn et al New Eng J Med (2016) 374;2009-20

HOPE -3 Primary prevention though cholesterol and BP lowering

LDLc lowering with statin in subjects with intermediate risk


Table 2. Primary, Secondary, and Other Outcomes.*

Outcome	Rosuvastatin Group (N=6361)	Placebo Group (N=6344)	Hazard Ratio (95% CI)	P Value
Coprimary outcomes — no. (%)				
First coprimary outcome	235 (3.7)	304 (4.8)	0.76 (0.64–0.91)	0.002
Second coprimary outcome	277 (4.4)	363 (5.7)	0.75 (0.64–0.88)	<0.001

Blood pressure lowering

	•	U		
Table 2. Primary, Secondary, and Other Outcomes.*				
Outcome	Candesartan + Hydrochlorothiazide (N = 6356)	e Placebo (N = 6349)	Hazard Ratio (95% CI)	P Value
Coprimary outcomes — no. (%)				
First coprimary outcome	260 (4.1)	279 (4.4)	0.93 (0.79–1.10)	0.40
Second coprimary outcome	312 (4.9)	328 (5.2)	0.95 (0.81-1.11)	0.51
Yusuf et al New Eng J Med (2016) 374;2021-31		Lonn et al New E	ng J Med (2016)	374;2009-2

PPP and TNT Baseline HDL Cholesterol and risk of CHD

Sacks et al. Circulation. 1999;100:I-739.

Barter et al. *New Eng J Med.* 2007;357:1301-1310

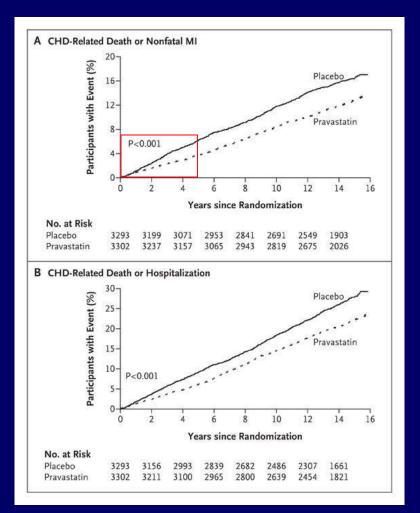
HDL raising with CETP inhibitors

Schwartz et al. *New Engl J Med.* 2012;367:2089-99 Understanding the lifetime benefits of statin treatment

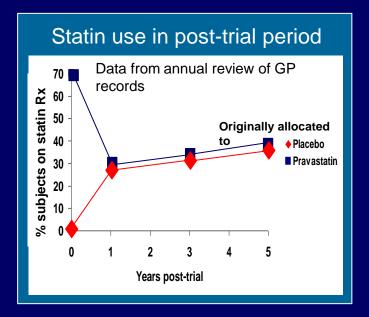
- CVD primary prevention key lessons from landmark trials.
- WOSCOPS 20-year experience with statin treatment.
- Adherence in primary prevention efficacy, safety and tolerability.

Long-term observational study of WOSCOPS

80,230 men attended Study Visit 1 for risk factor evaluation

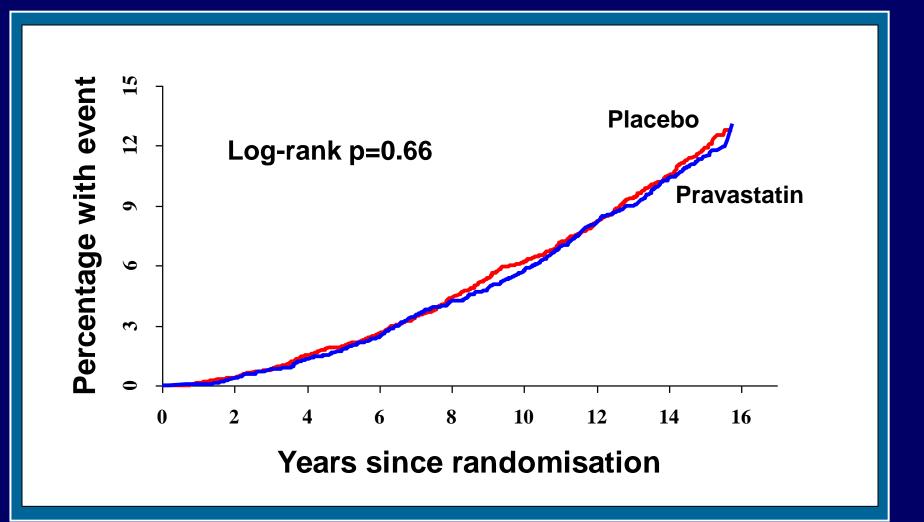

61,211 had no personal CHD history (1ary)

> 8,570 had personal CHD history (2ary)


6,595 randomised to trial (LDLc 4.0-6.0 mmol/l)

National electronic health records – hospital discharges; deaths over 20 years

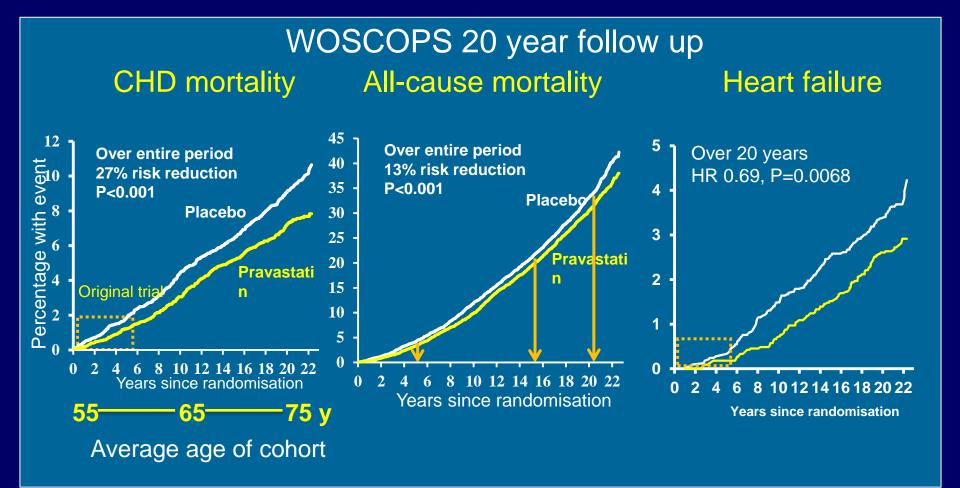
Long term safety of statins WOSCOPS: 15 year follow up


CHD-related death or nonfatal MI
Risk reduction in statin group
40% during trial (*P*<0.001)
18% post-trial (*P*=0.02)
27% overall follow-up (*P*<0.001)

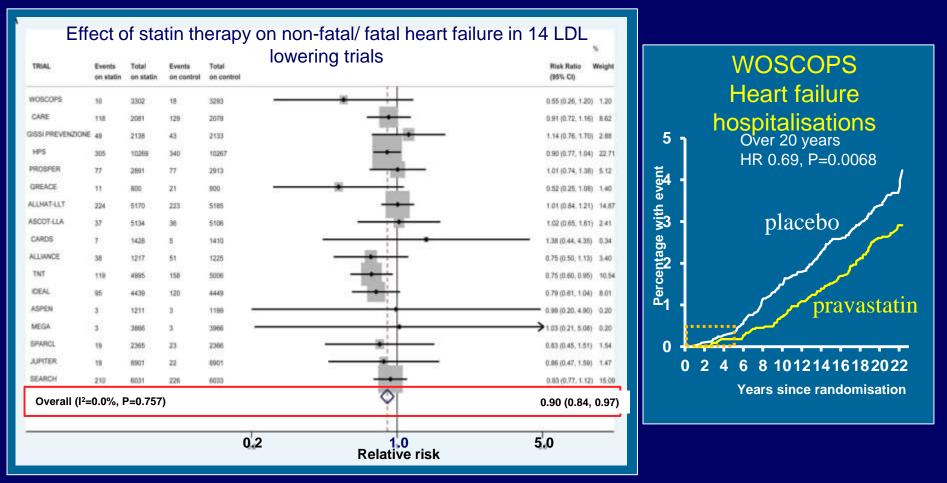
K-M curves according to the originally assigned study group

Ford I et al. N Engl J Med 2007;357:1477-1486

WOSCOPS 15 year follow up Long-term overall safety of pravastatin


Ford et al, N Eng J Med (2007) 357 1477-86

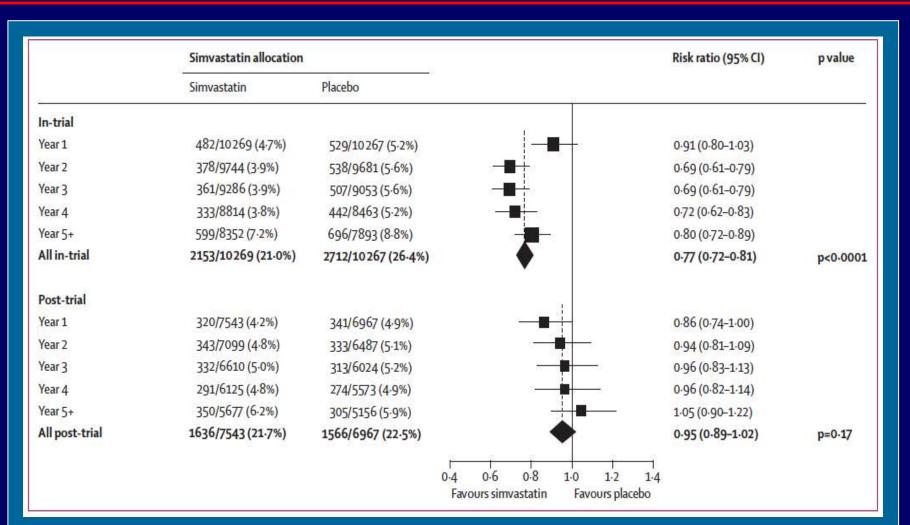
Long term safety in statin studies WOSCOPS 20 year experience


	Placebo, number (%) with event	Pravastatin, number (%) with event	Adjusted Hazard Ratio (95% Confidence	
Endpoint	Total n=3293	Total n=3302	Interval)	P- Value
All cancers	816 (24.8%)	809 (24.5%)	0.96 (0.87, 1.06)	0.41
Colorectal cancer	140 (4.25%)	127 (3.85%)	0.87 (0.68, 1.10)	0.25
Lung cancer	202 (6.13%)	187 (5.66%)	0.89 (0.73, 1.08)	0.24
Prostate cancer	170 (5.16%)	186 (5.63%)	1.05 (0.85, 1.29)	0.65
Upper GI cancer	77 (2.34%)	87 (2.63%)	1.09 (0.80, 1.48)	0.60
Urinary tract cancer	97 (2.95%)	99 (3.00%)	0.99 (0.75, 1.31)	0.93
Other cancer	160 (4.86%)	157 (4.75%)	0.95 (0.76, 1.18)	0.62
All non-CVD deaths	757 (23.0%)	731 (22.1%)	0.92 (0.83, 1.02)	0.12

Ford I et al. Circulation. (2016); 133:1073-80

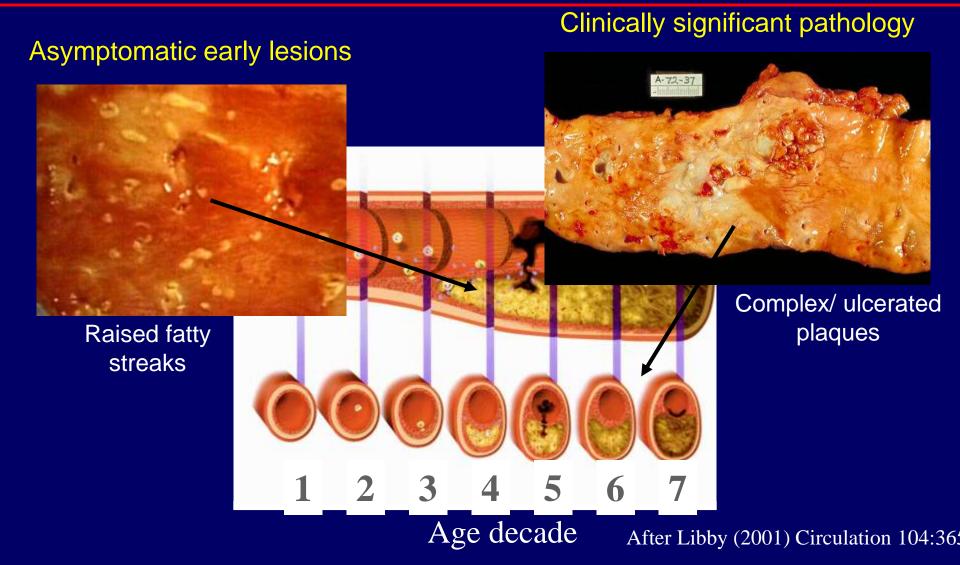
Assessing long term (lifetime) benefits of LDL lowering in WOSCOPS

Additional/ long term benefits of LDL lowering in heart failure

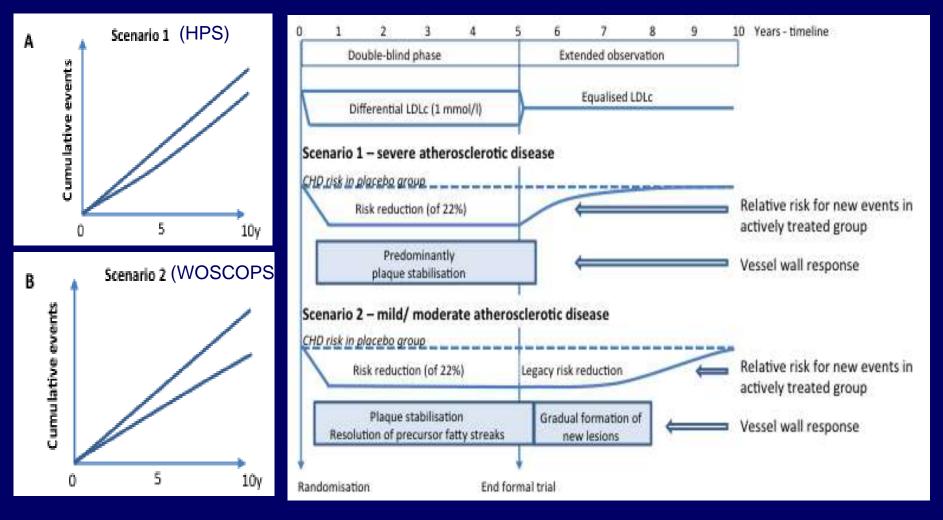

Preiss et. al Europ Heart J (2015) 36;1536-46

WOSCOPS - Legacy benefits during post-trial period

	←	n trial – 5	years →	- Pos	t trial – 15	5 years ·
	Placebo, number (%) with event	Pravastatin, number (%) with event	Adjusted Hazard Ratio (95% CI)	Placebo, number (%) with event	Pravastatin, number (%) with event	Adjusted Hazard Ratio (95% CI)
Endpoint	Total n = 3293	Total n = 3302	P-value*	Total n = 3023	Total n = 3118	P-value*
Fatal or nonfatal MI	190 (5.77%)	115 (3.48%)	0.59(0.47, 0.74), <0.0001	427 (14.13%)	372 (11.93%)	0.82(0.71, 0.94) , 0.0054
CHD related death or nonfatal MI	198(6.01%)	119(3.60%)	0.58(0.47, 0.73),<0.0001	480 (15.88%)	418 (13.41%)	0.82(0.72, 0.93),0.0028
CHD related death or hospitalisation	273 (8.29%)	177(5.36%)	0.58(0.47, 0.72),<0.0001	823 (27.92%)	739 (24.12%)	0.79(0.70, 0.89) , 0.0002
CV related death or hospitalisation	415 (12.60%)	329 (9.96%)	0.62(0.52, 0.73),<0.0001	1301 (46.05%)	1215 (41.51%)	0.81(0.73, 0.90) , <0.0001
Fatal or nonfatal stroke	40 (1.21%)	29 (0.88%)	0.56(0.31, 1.03),0.0608	332 (10.61%)	329 (10.36%)	1.00(0.82, 1.22),0.9856

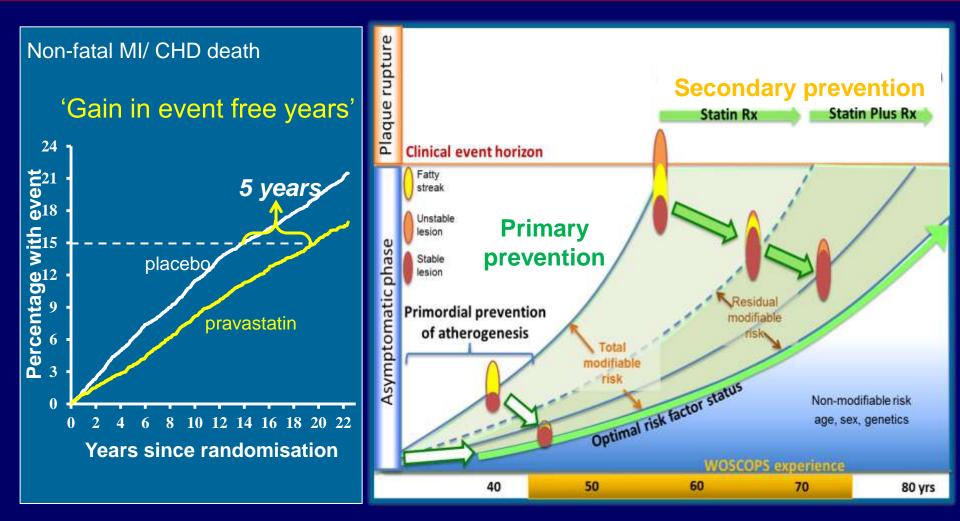

Ford I et al. Circulation. (2016); 133:1073-80

Legacy benefit in statin trials -HPS

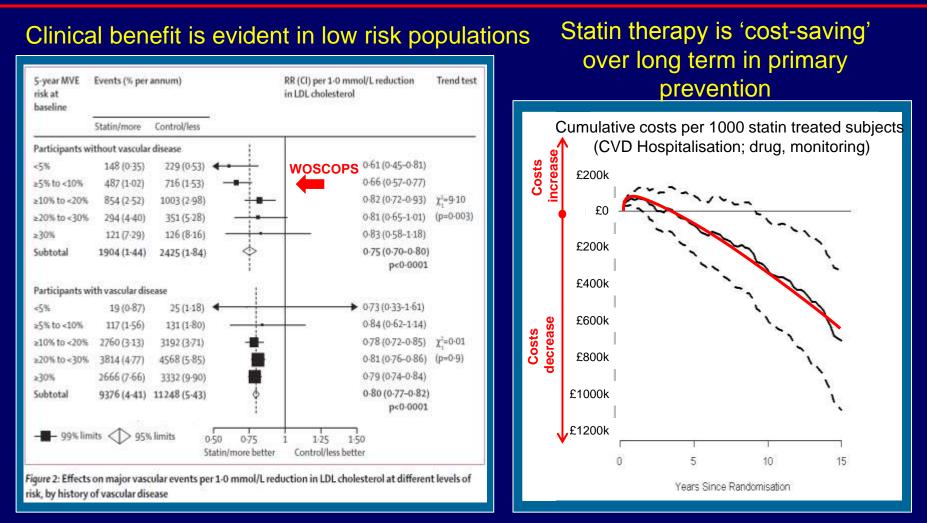


HPS Collaborative Group Lancet (2011) 378;2013-2020

Atherosclerosis over lifetime Changing nature of lesions



Potential mechanism of a legacy effect in LDL lowering trials


Packard, Ford Curr Opin Lipidol (2015) 26;572-9

Altering disease trajectories in CVD Benefits of early intervention

Packard et al. Vasc Pharmacol (2015) 71;37-39

Economic benefits of primary prevention

CTTC Lancet 2012:380:581-90

McConnachie, Ford, Packard et al. 2013 (WOSCOPS,unpublished) Understanding the lifetime benefits of statin treatment

- CVD primary prevention key lessons from landmark trials.
- WOSCOPS 20-year experience with statin treatment.
- Adherence in primary prevention efficacy, safety and tolerability.

Response to UK NICE widening of statin use in primary prevention – 2014/ 2016

21st March 2014

theguardian

Statins for all: do the benefits outweigh the risks?
 society

Doctors' fears over statins may cost lives, says top medical researcher

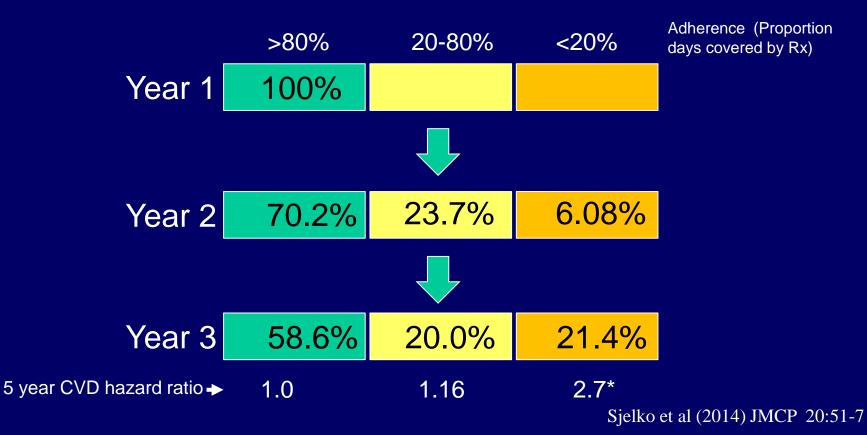
'I suffered terrible aching limbs'

HailOnline

May 15th 2016

But cardiologist Dr Aseem Malhotra said: 'I have no doubt millions of people taking statins in the UK will not benefit but are being put at risk of unnecessary harm.'

AE profile High vs moderate intensity statin


Event	Odds ratio(CI)
Any AE	1.44(1.33-1.55)
LFT abnormalities	4.48(3.27-6.16)
CK>10	9.97(1.28-77.9)
Rhabdomyolysis	1.66(0.60-4.57)

Silva et al (2007) Clin. Therap. 29:253-260

Adherence to statin therapy in primary prevention

US Prescription claims database - Asymptomatic patients prescribed statin n=11,126

Yearly adherence changes in initially good compliers to statin

Pravastatin Pooling Project experience

CPK Abnormalities

Placebo

(n = 5233)

n (%)

563 (10.8)

460 (8.8)

79(1.5)

16 (0.3)

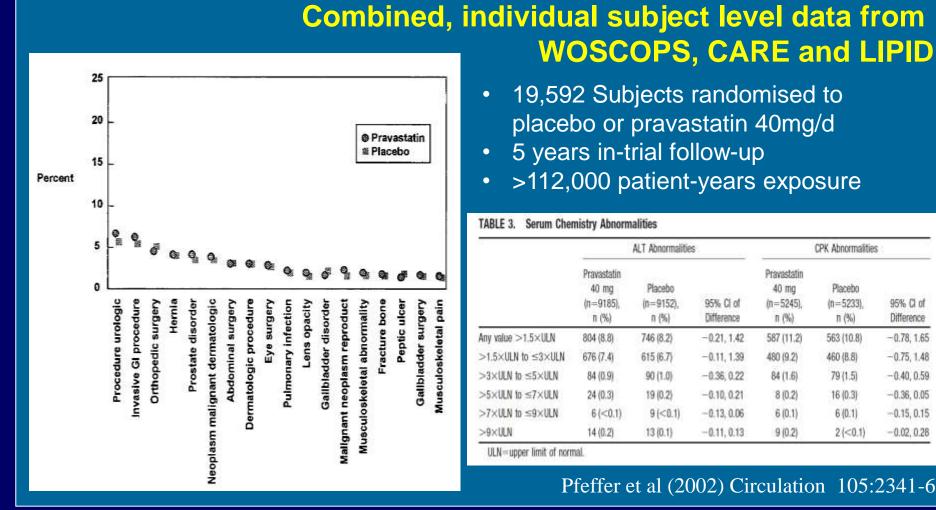
6 (0.1)

2(<0.1)

95% Cl of

Difference

-0.78, 1.65


-0.75, 1.48

-0.40, 0.59

-0.36, 0.05

-0.15, 0.15

-0.02, 0.28

Statin safety and tolerability in trials: Rankings of Statins

Comparative Tolerability and Harms of Individual Statins A Study-Level Network Meta-Analysis of 246955 Participants From 135 Randomized Controlled Trials

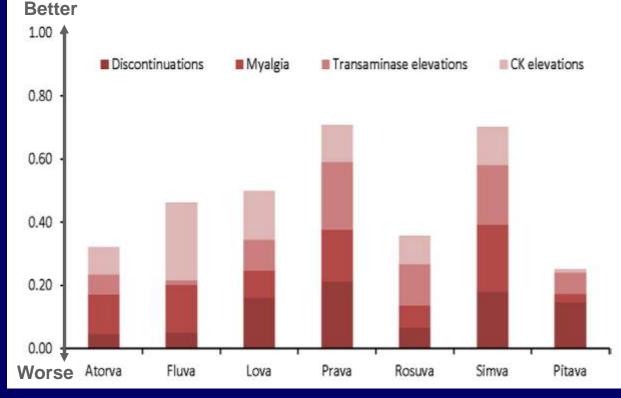


Figure 6. Overall ranking of individual statins in placebo-controlled and activecomparator trials of participants by their overall probability to be the best treatment in terms of discontinuations because of adverse events, myalgia, hepatic transaminase elevation, and CK elevation. In addition to the overall score for each statin, the relative contribution of each of the 4 outcomes to the overall score is also shown. Each statin was scored with points up to a maximum of 0.25 for each outcome (overall maximum score: 1.00). Higher scores indicate a better tolerability and safety profile. CK indicates creatine kinase.

Naci et al (2013) Circ Cardiovasc Qual Outcomes.6:390-9

Optimising adherence in primary prevention

When going beyond lifestyle and diet intervention, doctor and patient together need to:-

- Discuss risk of CVD event use of charts and Apps.
- Be convinced of long-term benefits of medication need for education.
- Review reassuring evidence of safety – comprehensive and long term data.
- Address tolerability minimizes discontinuations.

Brief Summary #2

- Current therapeutic focus is on LDL as the primary target in CVD prevention.
- Long-term (lifelong) follow up of WOSCOPS provides extended safety and efficacy data – 'legacy' effect of statin therapy appears.
- Adherence is a major challenge in interventions in CVD primary prevention.
- Substantial evidence supports the concept of early intervention/ primary prevention to achieve maximum impact of LDL lowering.

Strategies for Primary Prevention

Early – safe - smart

Strategies for primary prevention

- Identification of individual at risk using of risk factor 'score' charts.
- Recognising advantages of early intervention.
- Use of biomarkers and gene scores – the future.

EAS/ ESC Guidelines 2011

With

HDL

HDL

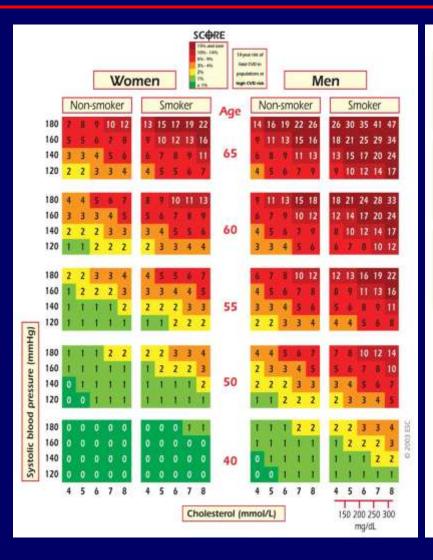
HDL

HDL

With

HDL (

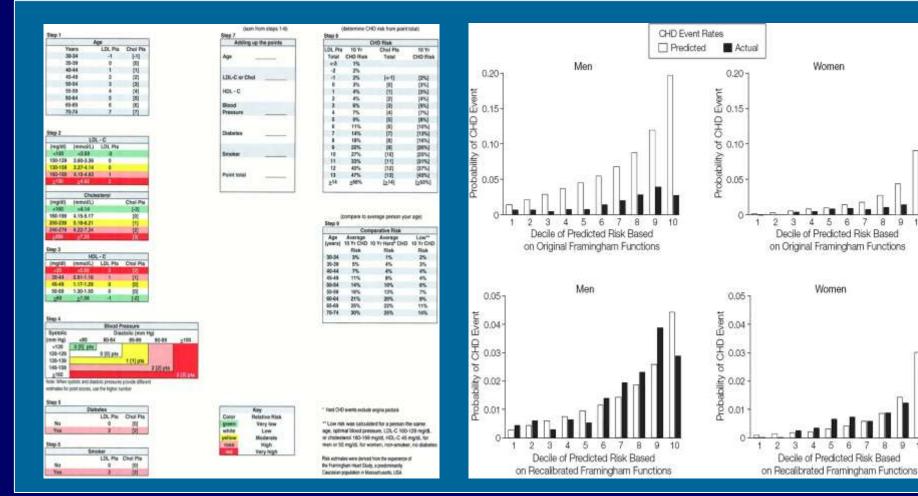
HDL


HDL

With

HDL

HDL


HDL 1

			1-1012	No	n_	Sm	ok	er	Age	-	Sr	no	ker	a.		
out HDL:	4.4		180	1	7	8	8	9			14	15	16	17	Without HDL:	5.7
0.8:	8.1		160	4	ŝ.	6	6	7	65	1200				15	HDL 0.8:	10.2
1.0:	6.7		and the owner of the		G.	۱.	5	5	05			1	-	1000	HDL 1.0:	8.5
1.4:	4.5		140		ч.	14		_		8	>			10	HDL 1.4:	5.9
1.8:	3.0		120	3	3	3	4	4		6	6	7	-7	8	HDL 1.8:	4.0
out HDL:	4.2	-	180	3	3	4	4	4		-6	7	7	8	8	Without HDL:	4.4
0.8:	8.0	H H	160	2	3	3	3	3	60			-	5	2	HDL 0.8:	8.5
1.0:	6.5	Ξ		650	-			-	00		CO.		Ċ,	/	HDL 1.0:	7.0
1.4:	4.4	E	140	2	2	2	2	2		4	4	4	4	1	HDL 1.4:	4.7
1.8:	2.9	ě	120	1	1	2	2	2		3	3	3	3	4	HDL 1.8:	3.2
out HDL:	2.4	Systolic Blood Pressure (mmHg	100	-	~		6	2		100	1201	100			Without HDL:	4.5
0.8:	4.6	ē	180	2	2		2	2	-	4	4	4	۳		HDL 0.8:	8.3
1.0:	3.8	ā			1	2	2	2	55	3	3	3	3	4	HDL 1.0:	6.9
1.4:	2.5	B	140	1	1	1	1	1		2	2	2	2	3	HDL 1.4:	4.7
1.8:	1.7	000	120	1	1	1	1	1		2	2	2	2	2	HDL 1.8:	3.2
		ic.	35553	194.50			14.14			1				POP I	Without HDL:	2.1
		2	180	1	1	1	1	1		1	2	2	2	2	HDL 0.8:	4.4
		ys:	160	1	1	1	1	1	50	1	1	1	1	2	HDL 1.0:	3.5
		S	140	0	0	1	1	1		1	1	1	1	1	HDL 1.4:	2.3
			120		0	0	0	0		1	1	1	1	1	HDL 1.8:	1.5
				a			ä					100	1.00			
			180		0	0	0	0		0	0	1	1	1		
			160		0	0	0	0	40	0	0	0	0	0		
			140	0	0	0	0	0		0	0	0	0	0		
			120	0	0	0	0	0		0	0	0	0	0		
				4	5	6	7	8		4	5	6	7	8		
					То	tal	Ch	ole	este	rol	(m	mo	1/1	Ň.		

Catapano et al (2011) Atherosclerosis 217:3

International use of Framingham risk calculator after recalibration

Review by Cooney, Dudina and Graham (2009) JACC 54:1209-27

9 10

9

Long-term observational survey of WOSCOPS screenees

80,230 men attended Study Visit 1 for risk factor evaluation

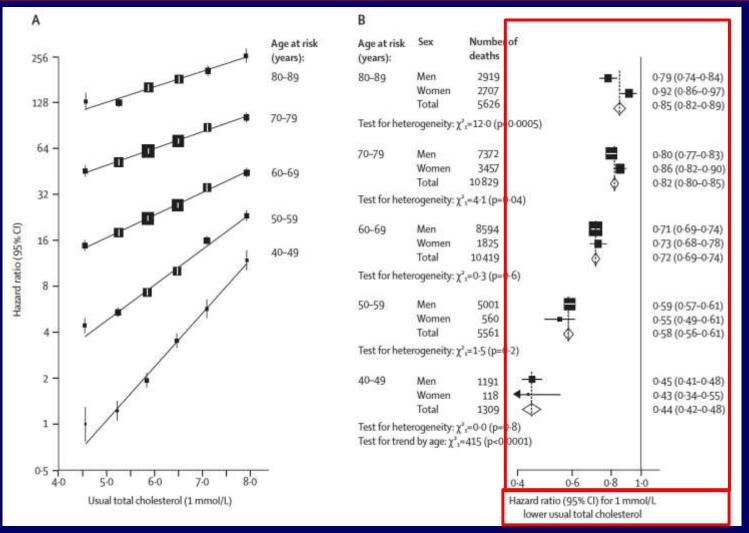
61,211 had no personal CHD history (1ary) 8,570 had personal CHD history

National electronic health records – hospital discarges; deaths

Packard et al. (2017) Europ Heart J Qual Care Clin Outcomes 3;281-288

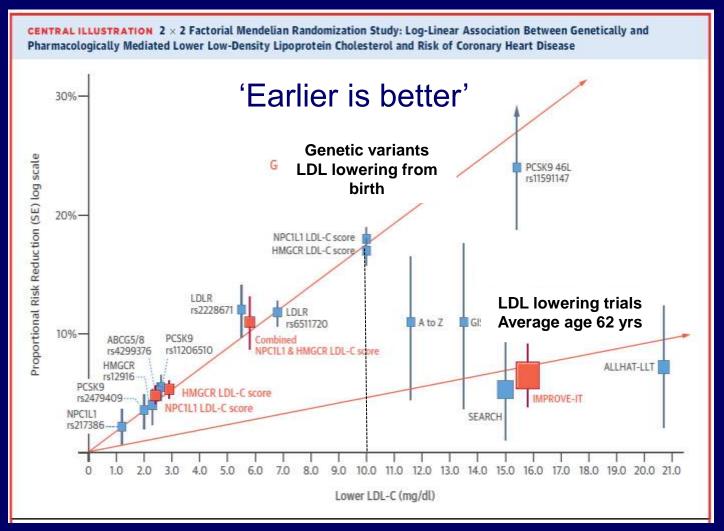
Cumulative CHD burden 20 years in 61,211 WOSCOPS screened men

Long term observed clinical events in asymptomatic men

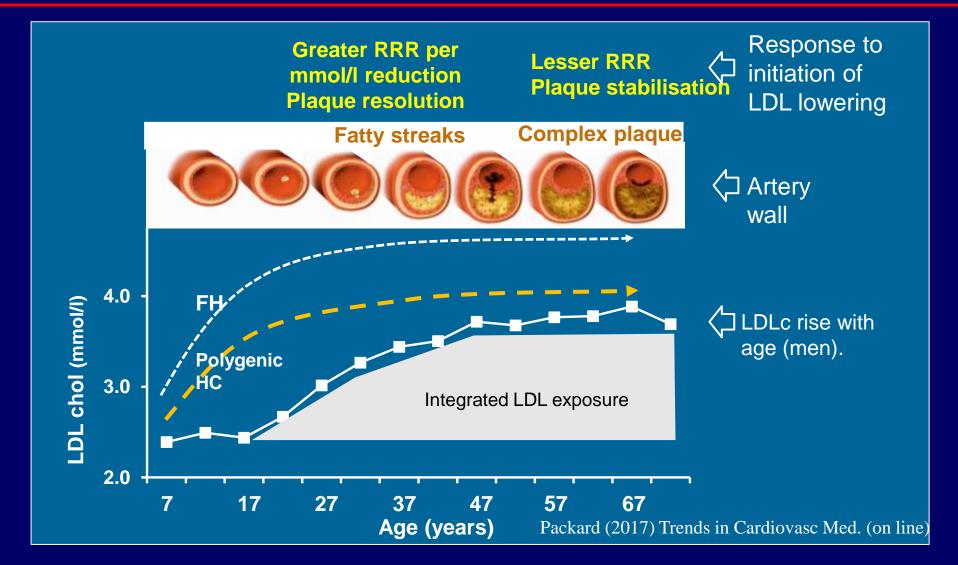

Group (n)	Mean cholesterol <i>[LDL]</i> (mmol/l)	Observed CH hospitalisatio events per 10 subjects over 20 years	on hospital days 0 per 100 subjects over 20 years	Adjusted hazard ratio ^a (95% CI)							
No CHD nistory – 'primary prevention'											
P4 (10767)	7.05 [5.0]	52.7	NNT = 3-4 349.6	2.2(2.0-2.5)							
P3 (22288)	5.98 [4.0]	42.4	288.3	1.8(1.7-2.0)							
P2 (18952)	5.06 [3.1]	33.6	232.2	1.5(1.3-1.6)							
P1 (7414)	4.00 [2.0]	23.0	167.2	1.0(referent)							

Packard et al. (2017) Europ Heart J Qual Care Clin Outcomes 3;281-288

Strategies for primary prevention


- Identification of individual at risk using of risk factor 'score' charts.
- Recognising advantages of early intervention.
- Use of biomarkers and gene scores – the future.

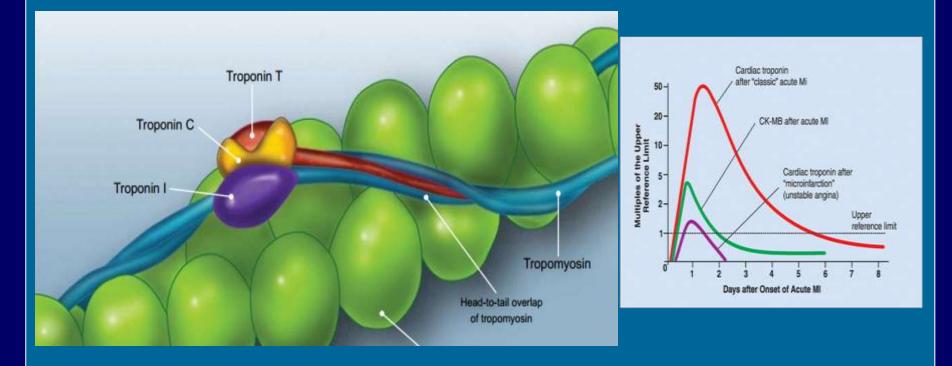
Age, cholesterol and CHD risk - Predicted greater relative risk reduction with early intervention


Prospective Studies Collaboration Lancet (2007) 370:1829-39

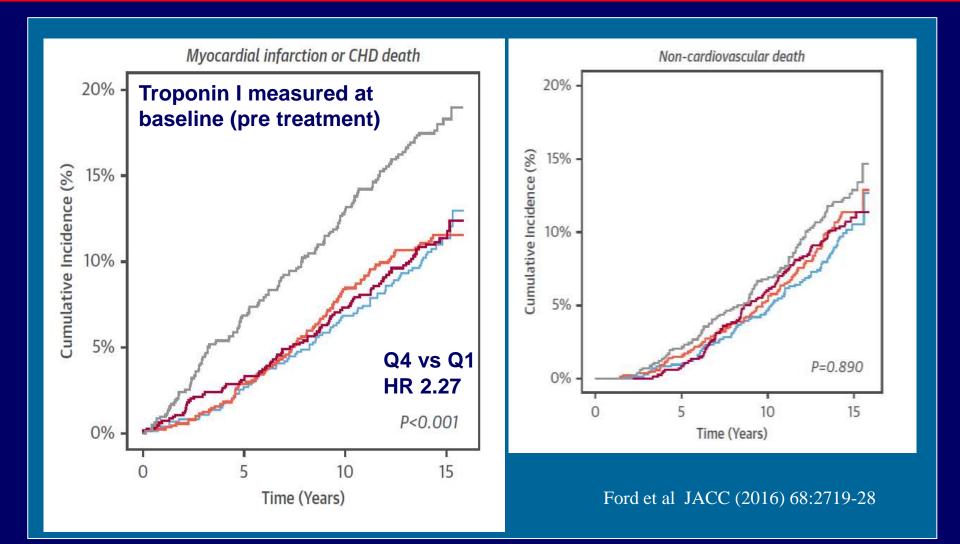
Inherited vs pharmacologically based LDL lowering

Ference et al JACC (2015) 65; 12552-61

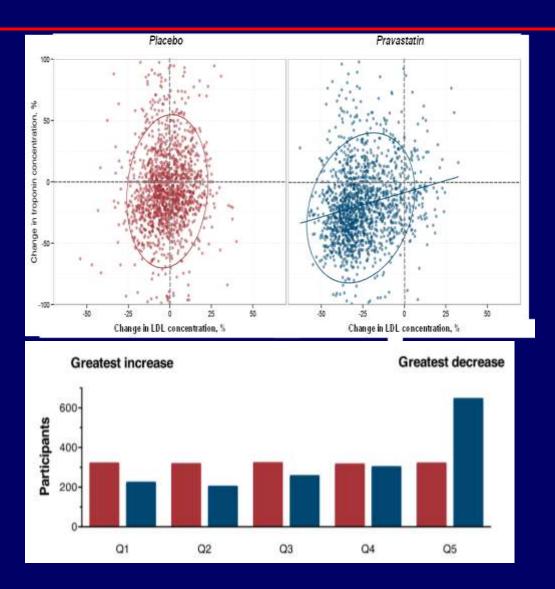
Age and the impact of LDL on atherosclerosis



Strategies for primary prevention

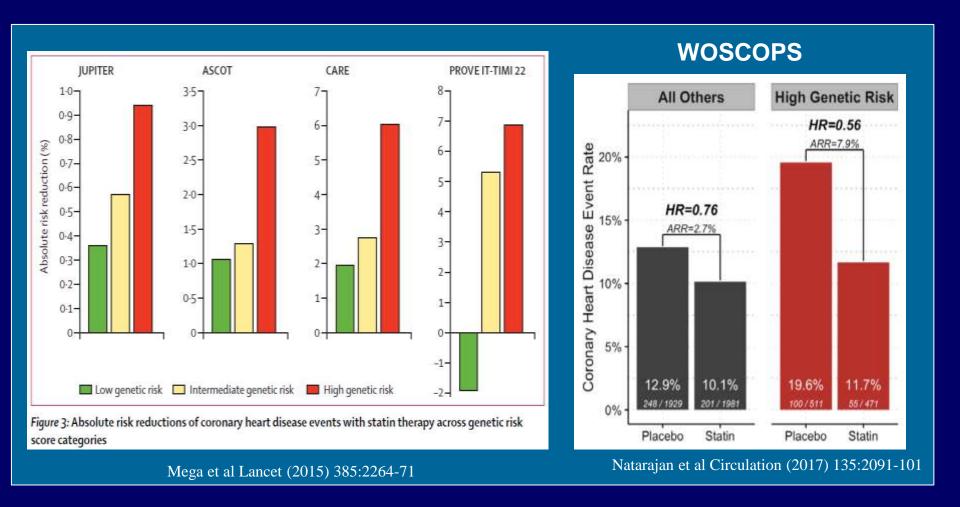

- Identification of individual at risk using of risk factor 'score' charts.
- Recognising advantages of early intervention.
- Use of biomarkers and gene scores – the future.

Troponin as an index of cardiomyocyte damage or stress


Troponin T, I, C complex with actino-myosin in cardiac muscle

Troponin I and CVD risk in a primary prevention population - WOSCOPS

Troponin I is decreased by statins


LDL lowering with pravastatin moved subjects to lower quintiles of change in trop I.

? LDL lowering induced 'net repair'.

? Change in trop I as biomarker of atherosclerosis progression.

Ford et al JACC (2016) 68:2719-28

LDL lowering in primary prevention Targeting based on gene score

Conclusion

Conclusions

- Current therapeutic focus is on LDL as the causative agent in atherosclerosis.
- Effective primary prevention using moderate intensity statin therapy has a strong evidence base.
- Long-term (lifelong) follow up of WOSCOPS provides extended safety and efficacy data – 'legacy' effect of pravastatin therapy appears.
- Challenge of adherence in primary prevention need a combination of safety, efficacy, tolerability.
- Benefits of early LDLc lowering becoming apparent.