Effects of GLP-RA's on the kidney

高雄長庚醫院腎臟科 楊智超 109-01-11

The burden and progress of DKD in T2DM: focus on aging kidneys

Increased life expectancy and aging kidneys!! Improved diabetes care has not yet succeeded in reducing renal complications

Global Burden of Chronic Kidney Disease 1990–2013^a

CKD Etiology	No. of Cases (x1,000)		Change in No. of Cases	Prevalence per 100,000 Adults		Change in Prevalence	
	1990	2013	1990-2013	1990	2013	1990-2013	
CKD-diabetes mellitus	43,339	88,711	+82.5%	1230	1355	+11.85%	
CKD-hypertension	79,945	101,253	+26.8%	1634	1453	-10.7%	
CKD-glomerulonephritis	82,920	108,861	+32.7%	1866	1590	-13.5%	
CKD-other causes	112,461	173,091	+53.9%	2507	2575	+3.1%	
CKD-all cases	318,665	471,916	+48.1%	7237	6973	-3.6%	

 Although the overall age-standardized prevalence rate of all-cause generic CKD declined by 3.6%, the prevalence of CKD associated with diabetes mellitus increased by almost 12% from 1990 to 2013

CKD=chronic kidney disease. ^aNumber of cases and adjusted prevalence rates. Note: Prevalence values are age-standardized. Data are adapted from Global Burden of Disease Study 2013 Collaborators²

1. Glassock et al. Nat Rev Nephrol. 2017;13(2):104-114

2. Global Burden of Disease Study 2013 Collaborators. Lancet. 386, 743-800 (2015)

娛樂 竈伴 NEW 即時 政治 社會 生活 國際 地方 人物 蒐奇 影音 財經 汽車 時尚 體育 3C 評論 玩咖 食譜 健康 地產 專區 TAIPEI TIMES

9萬人洗腎創新高...年花健保近450億

2019-09-02

腎病醫療費513億 蟬聯10大疾病首位

〔記者林惠琴/台北報導〕健保支出腎病最花錢!衛福部健保署統計,慢性腎臟病再度蟬聯去 年使用醫療費用最多的十大疾病首位,共計三十六,四萬人就醫,花費約五一三,七八億元, 且國內洗腎更已增達九萬人,創下歷年新高。

使用醫療費用最多的十大疾病首位,共計三十 六,四萬人就醫,花費約五一三,七八億元。 (資料照) 健保署統計,去年給付慢性腎臟病高達五一三·七八 億,占健保總額近七%,為所有單一疾病花費之首, 且洗腎達到九萬人,一年花費四四九·四六億,包含 血液透析八·二萬人、腹膜透析六四九○人,平均每 名洗腎患者年花健保近五十萬元。

6成因三高控制不佳 邁入洗腎人生

台灣腎臟醫學會理事長盧國城指出,不少患者是糖尿 病、高血壓、高血脂等三高控制不佳,進而邁入洗腎 人生,估計洗腎病人中,近五十%有糖尿病、約十 五%至二十%有高血壓或心臟病,若三高病況能良好 控制,推估可減少六十%洗腎人數。

盧國城也提到,洗腎人數高不僅發生在台灣,而是全球現象,可能就與老化、三高病人增加有 關,而台灣洗腎較歐美品質佳,病人存活率更長,加上持續新增病人,也因此國內洗腎人數總 是居高不下。

除了慢性腎臟病,其次花費健保最多是糖尿病二九一,六八億元、 二億元、齲齒一六七,○九億元、高血壓一三九,二億元。

~78,000 hemodialysis patients in Taiwan in 2017 49.3% are diabetic patients

Year	2001	2005	2009	2013
Population	0.16%	0.21%	0.25%	0.30%
Cost	7.2%	7.3%	8.2%	8.3%
	45X	35X	33X	28X

Fig. 7 Growth rate of percentage of dialysis to the general population and percentage of dialysis to the overall healthcare cost in Taiwan 2001–2013.

2017 Annual Report on Kidney Disease in Taiwan.

Nephrology 22, Suppl. 4 (2017) 3-8

Nephrol Dial Transplant (2008) 23: 3977-3982

Increased Age Is Associated With a Lower eGFR Among Patients With T2DM

Additional observational studies have demonstrated an age-related decline in eGFR in the range of 1.5-5.2 mL/min/1.73 m² in patients with T2DM²⁻⁴

Adapted with permission from Premaratne E et al.¹

^aNational Kidney Foundation severity scale of renal impairment.

GFR = glomerular filtration rate; T2DM = type 2 diabetes mellitus; eGFR = estimated GFR.

1. Premaratne E et al. Diabetologia. 2005;48:2486–2493. 2. Altemtam N et al. Nephrol Dial Transplant. 2012;27:1847–1854. 3. Ali O et al. BMJ Open. 2013;3:e001855. 4. Rossing K et al. Kidney Int. 2004;66:1596–1605.

Increased Age Is Associated With a Lower eGFR Among Patients With T2DM

Additional observational studies have demonstrated an age-related decline in eGFR in the range of 1.5-5.2 mL/min/1.73 m² in patients with T2DM²⁻⁴

Adapted with permission from Premaratne E et al.¹

^aNational Kidney Foundation severity scale of renal impairment.

GFR = glomerular filtration rate; T2DM = type 2 diabetes mellitus; eGFR = estimated GFR.

1. Premaratne E et al. Diabetologia. 2005;48:2486–2493. 2. Altemtam N et al. Nephrol Dial Transplant. 2012;27:1847–1854. 3. Ali O et al. BMJ Open. 2013;3:e001855. 4. Rossing K et al. Kidney Int. 2004;66:1596–1605.

Cardiovascular Comorbidities,

5% Medicare sample, by Diabetes and CKD status, 1999-2000

Kidney International, Vol. 64, Supplement 87 (2003), pp. S24–S31

Acclerated Progression of CKD

Accelerated progression of CVD in CKD

eGFR and albuminuria predict outcome!!

Levey AS, et al. Kidney Int. 2011;80:17-28

Renal Events by eGFR and Albuminuria : ADVANCE Study

Renal events: death as a result of kidney disease, requirement for dialysis or transplantation, or doubling of serum creatinine to >2.26 mg/dL (200 µmol/L)

13

10,640 patients with T2DM; median follow-up of 4.3 years eGFR, estimated glomerular filtration rate; HR, hazard ratio; T2DM, Type 2 diabetes mellitus; UAE, urinary albumin excretion Ninomiya T, et al. *J Am Soc Nephrol* 2009;20:1813–1821

Table 1—Association of CV end points with baseline eGFR stages									
	Total number of events (events/100 patient-years)			Adjusted hazard ratio (95% Size eGFR \geq 90 mL/min/1.73 m ²					
End point	Stage 1 eGFR ≥9 mL/min/1.73 m ²	0 Stage 2 eGFR 60-8 mL/min/1.73 m ²	9 Stage 3a eGFR 45–59 mL/min/1.73 m ²	Stage 3b eGFR 30-44 mL/min/1.73 m ²	Stage 2 eGFR 60-89 mL/min/1.73 m ²	Stage 3a eGFR 45–59 mL/min/1.73 m ²	Stage 3b eGFR 30-4 mL/min/1.73 m ²	4 P value	
CV death, MI, stroke, or hospitalization for UA	330 (3.52)	799 (3.55)	393 (5.74)	145 (7.34)	0.93 (0.82-1.06)	1.28 (1.10-1.49)	1.39 (1.13-1.72)	<0.0001	
CV death, MI, or stroke	281 (2.97)	692 (3.05)	358 (5.17)	141 (7.11)	0.94 (0.82-1.09)	1.36 (1.15-1.61)	1.60 (1.29-1.99)	< 0.0001	
CV death	136 (1.37)	333 (1.39)	188 (2.52)	79 (3.65)	0.89 (0.73-1.09)	1.31 (1.04-1.65)	1.65 (1.22-2.23)	< 0.0001	
Hospitalization for UA	57 (0.59)	135 (0.58)	42 (0.59)	7 (0.33)	0.95 (0.69-1.31)	0.85 (0.56-1.30)	0.40 (0.18-0.91)	0.17	
MI	130 (1.36)	281 (1.22)	141 (2.00)	57 (2.81)	0.86 (0.69-1.06)	1.26 (0.98-1.63)	1.50 (1.07-2.11)	0.0001	
Stroke	53 (0.55)	185 (0.80)	92 (1.29)	27 (1.30)	1.37 (1.00-1.86)	1.96 (1.37-2.79)	1.79 (1.10-2.93)	0.0016	
All-cause death	186 (1.87)	489 (2.04)	267 (3.57)	130 (6.01)	0.94 (0.79-1.12)	1.35 (1.11-1.64)	1.97 (1.55-2.52)	< 0.0001	
Hospitalization for heart failure	62 (0.64)	214 (0.92)	107 (1.50)	68 (3.36)	1.17 (0.88-1.56)	1.50 (1.08-2.08)	2.64X	<0.0001	
	Nor	Total number of moalbuminuria	events (events/100 Microalbuminuria) patient-year T	ECOS		*		
End point	UA	CR <30 mg/g	UACR 30-300 mg/g	UACR >300 mg	/g UACR 30-3	00 mg/g UACR	>300 mg/g	P value	
CV death, MI, stro hospitalization f	ke, or for UA	381 (3.54)	165 (5.03)	46 (7.13)	1.19 (0.99)-1.43) 1.33	(0.96-1.83)	0.0797	
CV death, MI, or st	troke	331 (3.05)	155 (4.71)	46 (7.13)	1.28 (1.05	5-1.56) 1.52	(1.10-2.11)	0.0066	
CV death		119 (1.03)	79 (2.26)	24 (3.41)	1.86 (1.39	9-2.49) 2.27	(1.43-3.60) <	<0.0001	
Hospitalization for	'UA	65 (0.58)	12 (0.35)	0 (0)	0.56 (0.30	0–1.06)		0.2018	
MI		174 (1.58)	63 (1.88)	22 (3.36)	1.04 (0.77	7–1.40) 1.52	(0.95-2.42)	0.2172	
Stroke		79 (0.71)	35 (1.03)	12 (1.78)	1.16 (0.77	7-1.75) 1.75	(0.92-3.32)	0.2179	
All-cause death		203 (1.76)	105 (3)	34 (4.83)	1.45 (1.14	I-1.84) 1.82	(1.25-2.66)	0.0006	
Hospitalization for heart failure	*	94 (0.84)	53 (1.57)	20 (3.07)	1.63 (1.15	5-2.29) <mark>2.</mark>	78X 🤊 🧃	<0.0001	
UA, unstable angir	na.			Diabetes	s Care, 201	6:39:2304-	2310		

Development of Macroalbuminuria Heralds Rapid Decline in Glomerular Filtration in Type II Diabetes

Renal Insufficiency Is a Recognized Comorbidity Among Patients With T2DM¹

Based on US NHANES Database 1999–2012 Data (N=2,915), Patients With Renal Insufficiency^a Comprise an Estimated Proportion of Patients With T2DM^b

Based on eGFR, which was calculated using the CKD-EPI equation.

Age adjusted to 2012 NHIS diabetes population.

Proportion of patients did not meet CKD criteria based on eGFR or albuminuria.

T2DM = type 2 diabetes mellitus; NHANES = National Health and Nutrition Examination Survey; eGFR = estimated glomerular filtration rate; CKD-EPI = Chronic Kidney Disease Epidemiology Collaboration; NHIS = National Health Interview Survey.

Bailey RA et al. BMC Research Notes. 2014;7:415.

12

Natural history of diabetic nephropathy

Vora JP, et al. In: Johnson RJ, Feehally J, eds. Comprehensive Clinical Nephrology. New York: Mosby; 2000.

Large glomerulus
→large filtration surface
→rapid sclerosis

Save diabetic kidneys: The earlier, the better!!

Metabolic

Hemodynamic

Diabetic treatment with GLP-1RA: focus on both quantity and quality

Diabetic treatment should focus on both quantity and quality

Quantity

- HbA1c
- FPG
- PPG

Quality

- Hypoglycemia
- Body weight
- Glycemic variability
- CV safety
- Beneficial effects beyond sugar lowering

Weight gain and hypoglycemia 🗲 Bad metabolic memory!!

Decreasing HbA1c is associated with increased risks of hypoglycaemia and weight gain

	Major hyp annual	oglycemia rate (%)	Weight gain at end of follow-up (kg)		
Trial	Intensive	Standard	Intensive	Standard	
ADVANCE	0.6*	0.3*	0.1	-0.8	
ACCORD	3.2	1.0	3.5	0.4	

* Represents 0.7 and 0.4 events per 100 patient years for intensive va standard treatment

HbA1c

HbA1c-haemoglobin A1c; OAD, oral antidiabetic drugs. Jacob AN, et al. *Diabetes Obes Metab.* 2007; 9:386–393; Kahn SE, et al. *NEngl J Med.* 2006; 355: 2427–2443; Wright AD, et al. *J Diabetes Complications.* 2006; 20: 395–401.

LA1c in 4M:

1.4% in ACCORD

0.6% in ADVANCE

23

Traditional antidiabetic agents: Bad durability=unsatisfied effects and unmet needs!!

Diabetes 2009 Apr; 58(4): 773-795. 25

Unmet medical need: progressively declining b-cell function in type 2 diabetes patients

Glycemic variability and mean A1c = Bad durability= Bad memory!!

Updated mean A1c and the complications of T2DM (Glucose exposure: metabolic memory !!)

UKPDS: Tight Glycaemic Control Reduces Complications

Epidemiological extrapolation showing benefit of a 1% reduction in mean HbA_{1c}

Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis

Diabetes Care 2015;38:2354-2369 | DOI: 10.2337/dc15-1188

RESULTS

Seven studies evaluated HbA_{1c} variability among patients with type 1 diabetes and showed an association of HbA_{1c} variability with renal disease (risk ratio 1.56 [95% CI 1.08–2.25], two studies), cardiovascular events (1.98 [1.39–2.82]), and retinopathy (2.11 [1.54–2.89]). Thirteen studies evaluated HbA_{1c} variability among patients with type 2 diabetes. Higher HbA_{1c} variability was associated with higher risk of renal disease (1.34 [1.15–1.57], two studies), macrovascular events (1.21 [1.06–1.38]), ulceration/gangrene (1.50 [1.06–2.12]), cardiovascular disease (1.27 [1.15–1.40]), and mortality (1.34 [1.18–1.53]). Most studies were retrospective with lack of adjustment for potential confounders, and inconsistency existed in the definition of HbA_{1c} variability.

Short term fluctuations in blood glucose concentrations

Hypoglycemia and Weight Gain are intertwined

Association of <u>Hypoglycemia</u> With Incident Chronic Kidney Disease in Patients With Type 2 Diabetes

A Nationwide Population-Based Study Medicine 94(16):e771

Abstract: This article aims to investigate the long-term risk of incident chronic kidney disease (CKD) in type 2 diabetes mellitus (T2DM) patients with hypoglycemia.

This nationwide, population-based, propensity score (PS)-matched cohort study involved 2 cohorts: a hypoglycemic cohort and a matched cohort without hypoglycemia. Data from 1.3 million patients with newly diagnosed T2DM between 2000 and 2010 were extracted from Taiwan's National Health Insurance Research Database. Hypoglycemic events were collected using inpatient, outpatient, and emergency department diagnoses. Patients aged <20 years and those with previous histories of CKD were excluded. The association between hypoglycemia and subsequent CKD risk in patients with T2DM was examined using Cox regression analysis after PS matching.

During the mean follow-up period of 4.2 years, a total of 15,036 (1.7 %) patients experienced at least 1 episode of hypoglycemia and 15,036 matched controls without hypoglycemia were identified among 906,368 eligible patients. The incidence rates of subsequent CKD were 26.1 and 14.8 events per 1000 person-years in the hypoglycemic and matched cohorts, respectively. The hazard ratio (HR) of hypoglycemia for incident CKD was 1.77 (95% confidence interval [CI], 1.63–1.92; P < 0.001). Compared with those without hypoglycemia, HRs for 1 to 3 and >4 episodes of hypoglycemia for CKD were 1.65 (95% CI, 1.50–1.81) and 1.75 (95% CI, 1.34–2.29), respectively (P for trend <0.001).

Medscape Nephrology ~

Obesity-Related Deaths Hit New High Worldwide

BMI-related mortality: CVD>DM>CKD

N Engl J Med 2017; 377:13-27

BMI-related disability-adjusted life-years: CVD>CKD>DM

Prandial hyperglycemia (glucose fluctuation)

glucosuria (Natriuresis → TGF → afferent a. vasodilation)

Kidney: Intraglomerular pressure

Medicina 2019, 55(6), 268

Micro-outcomes in the ACCORD More renal injury!

	Glycaemia control			Hazard ratio (95% CI)			NNT
	Intensive		Standard				
	Events/n	%	Events/n	%			
First composite	443/5107	8.7	444/5108	8.7	1.00 (0.88–1.1	4) 0.9969	
Second composite	1591/5107	31·2	1659/5108	32.5		2) 0·1948	
Neph-1: incident microalbuminuria	399/3204	12·5	494/3232	15.3	0.79 (0.69-0.9	0) 0.0005	35
Neph-2: incident macroalbuminuria	138/4334	3.5	199/4361	4.6 —	0.69 (0.55-0.8	5) 0.0007	73
Neph-3: ESRD	911/5085	2.1	112/5108	2.2	0.92 (0.73-1.5	4) 0·7126	
Neph-4: doubling of SCr or >20 U eGFR decrease	2701/5035	<u>53</u> ∙6	2627/5034	52·2	- - 1·07 (1·01-1·1	}) 0.0160	-69
Neph-5: any of Neph-2, Neph-3, or Neph-4	2788/5107	54.6	2760/5108	54.0	■- 1.02 (0.99-1.1	o) <u>0</u> ∙0958	
Eye-1: photocoagulation or vitrectomy	350/4886	7.2	347/4910	7·1	1.01 (0.87-1.1	7) 0.9039	
Eye-2: cataract surgery	<u> 10/ in 1</u>	mo	n		0.90 (0.79-1.0	2) 0·1045	
Eye-3: three-line worsened	4 /0 111 4		11.		0.95 (0.87-1.0	4) 0·3013	
Eye-4: severe loss of vision*	258/4651	5.2	273/4689	5.8	0.95 (0.80-1.1	3) 0.5656	
Neuro-1: neuropathy (MNSI score >2.0)	1277/2815	45 ∙4	1338/2791	47.9		1) 0.0819	
Neuro-2: loss of vibratory sensation	766/4209	18·2	805/4209	19·1		5) 0·2926	
Neuro-3: loss of ankle jerk	1225/3298	37.1	1270/3265	38.9		1) 0.0997	
Neuro-4: loss of sensation to light touch	424/4577	9.3	481/4564	10.5	0.88 (0.77-1.0	0) 0.0451	78
				0.20	0.75 1.00 1.33		
				Favours	Favours		
				intensive c	control standard control		

Lancet 2010; 376: 419-30

Intensive glucose lowering and ESRD

- The ADVANCE trial

A1c 0.6% in 4 mon.

New era in the treatment of T2DM

"First, do no harm"

"Better metabolic memory"

"Offer a second chance to improve outcome"

Game changer: shows CV safety/benefits in old DM

Savor : 10.3 yrs; Examine: 7.3 yrs; Tecos: 11.6 yrs; EMPA-REG: 50%>10 yrs; LEADER: 13 yrs

Recent CVOTs with antidiabetic agents

Primary composite endpoint: MACE

*MACE+

White et al. N Engl J Med 2013; 389:1327-35; Scirica et al. N Engl J Med 2013;369:1317-26; Green et al. N Engl J Med 2015;373:232-42; McGuire et al. JAMA. 2019 Jan 1;321(1):69-79. 28; Neal et al. N Engl J Med 2017;377:644-57; Wiviott et al. NEnol J Med. 2019 Jan 24;380(4):347-357.

*MACE+

Pffefer et al. N Engl J Med 2015;373:2247-57; Intarcia press release 06 May 2016; Marso et al. N Engl J Med 2016;375:311-22; Zinman et al. N Engl J Med 2015; 373:2117- Marso et al. N Engl J Med 2016;375:1834-44; Holman et al. N Engl J Med 2017;377:1228-39; Hernandez et al. Lancet. 2018 Oct 27:392(10157):1519-1529.; Gerstein et al. Lancet. 2019 Jun 10. http://dx.doi.org/10.1016/S0140-6736(19)31149-3

Gerstein et al. N Engl J Med 2012;387; 319-28; Marso et al. N Engl J Med 2017;377:723-32

Renal Outcomes (95% CI)

J Am Coll Cardiol 2018;72:1856-69

39

Blood sugar control is more complex in elderly and/or DKD

1. CDA. Can J Diabetes 2008; 32:S29–S31. 2. Workgroup on Hypoglycemia, American Diabetes Association. Diabetes Care. 2005;28(5):1245-1249; 3. Frier BM. Diabetes Metab Res Rev. 2008;24(2):87-92; 4. Cryer PE. Diabetes. 2008;57(12):3169-3176.

Recognize Risk Factors for Severe Hypoglycemia

Risk factors in Type 2 DM patients

Elderly

Poor health literacy, Food insecurity

Increased A1C

Duration of insulin therapy

Severe cognitive impairment

Renal impairment

Neuropathy

TABLE 96-2 Glucose and insulin metabolism in patients with chronic kidney disease

Usually normal fasting blood glucose, but tendency to spontaneous hypoglycemia Fasting hyperinsulinemia with prolonged insulin half-life and elevated blood levels of proinsulin and C peptide Decreased requirement for insulin by diabetic patients Usually decreased early, but exaggerated late-insulin reponse to hyperglycemia induced by oral or intravenous glucose administration Elevated plasma immunoreactive glucagon concentration Impaired glucose tolerance (decreased peripheral sensitivity to insulin action, but normal suppression of hepatic glucose production by insulin)

hyperglucagonemia and postprandial hyperglycemia, play a more significant role in elderly with T2DM

elderly () and the young ()

Diabetes 2003 Jul; 52(7): 1738-1748. Am J Physiol 284:E7–E12, 2003

Prandial hyperglycemia

Clinical Characteristic in Pts with Elderly/DKD

> Fasting or spontaneous hypoglycemia

	Rx with Quality Quantity	Rx with Quality Quantity?
International Guidelines, year	HbA1c goal for most healthy older adults with intact cognitive and functional status	HbA1c goal for most frail older adults, with multiple comorbidities and limited life expectancy
ADA, 2019	<7.5%	<8-8.5%
AGA, 2013	7-7.5%	7.5–9%
AACE, 2018	≤6.5% <mark>GL</mark>	P-1RA >6.5%
ACP, 2018	7–8%	No specific target but minimizing symptoms related to hyperglycemia

ADA, American Diabetes Association; AGA, American Geriatrics Association; AACE, American Association of Clinical Endocrinologists; ACP, American College of Physician.

The beneficial roles of GLP-1 RA in CKD patients

Medscape

Source: Cardiovasc Diabetol © 2014 BioMed Central, Ltd.

HbA_{1c} reduction by baseline HbA_{1c} quartiles

*Glargine dose increased from Q1 to Q4 HbA_{1c} , glycosylated haemoglobin; OW, once weekly; Q, baseline quartile Buse JB et al. *Diabetes Obes Metab* 2015;17(2):145–151

Sitagliptin +Metformin can provide longer treatment duration than SU + Metoformin for <mark>5 years</mark>

- Observational 5 yrs italian study.
- T2DM patients not well controlled by metformin (n=216)
- Add Sitagliptin 100mg to metformin for combination therapy
- No additional AHA drug allowed; only with dosage adjustment with current drug
- Compared with patients using metformin + SU (matched for age, sex, diabetes duration.)

LIRA-DPP-4

Minor hypoglycaemia was recorded in about 5% in each group.

Lancet. 2010 Apr 24;375(9724):1447-56.

Lowest Glucose Variability

DOI: 10.2337/dc16-1582

and Hypoglycemia Are Observed With the Combination of a GLP-1 Receptor Agonist and Basal Insulin (VARIATION Study)

GLP-1a: liraglutide for 39 cases exenatide twice daily for 1 case

stable A1C value <7.5%

BO= Basal insulin + Oral anti-diabetic agents BGLP= Basal insulin + GLP-1 RA PM= Pre-mixed insulin BB= Basal-Bolus insulin

Table 2-ANCOVA and direct cohort comparisons for primary and secondary outcomes from 6-day CGM data Cohorts Between-cohort comparisons BO BGLP PM BB P value[^] Glucose (mg/dL) Daily SD (primary outcome)* 36.0 (10.8) 37.8 (9) 0.01 BO vs. BGLP (P = 0.03) BGLP vs. PM (P = 0.01) BGLP vs. BB (P < 0.01) 34.2 (9) 30.6 (9) BO vs. BGLP (P = 0.04) Total SD* 39.6 (10.8) 34.2 (10.8) 41.4 (10.8) 43.2 (10.8) 0.01 BGLP vs. PM (P = 0.01) BGLP vs. BB (P < 0.01) Daily average* 136.8 (19.8) 138.6 (21.6) 144 (19.8) 142.2 (23.4) 0.74 Daily SD by average* 0.20 BO vs. BGLP (P = 0.07) BGLP vs. PM (P = 0.06) 19.8 (10.8) 16.2 (7.2) 19.8 (9) 19.8 (10.8) BGLP vs. BB (P = 0.05) Hypoglycemia Daily frequency** 0.1(0.4)0.4 (0.7) BGLP vs. PM (P = 0.02) BGLP vs. BB (P = 0.01) 0.1(0.4)0.3 (0.4) 0.02 BGLP vs. PM (P = 0.02) BGLP vs. BB (P < 0.01) Daily percentage of time (%)** 0.6 (3.6) 0.1 (2.1) 1.9 (3.9) 2.5 (4.5) 0.02 Daily duration (minutes)** 7.3 (35.0) 2.9 (25.7) 23.6 (35.7) 31.1 (67.0) 0.01 BGLP vs. PM (P = 0.03) BGLP vs. BB (P < 0.01) Hyperglycemia Daily frequency* 1.7 (1.0) 1.8 (0.8) 1.8 (0.8) 1.8 (0.9) 0.85 14.5 (13.7) 20.2 (13.1) 20.4 (12.9) 0.26 Daily percentage of time (%)* 16.4 (12.9) AUC** BGLP vs. BB (P < 0.01) 0.2 (0.5) 0.1 (0.3) 0.3 (0.4) 0.3 (0.4) 0.04 BGLP vs. PM (P = 0.01)

^Adjusted for age, BMI, diabetes duration. and baseline A1C; *Data are presented as mean (standard deviation); **Data are presented as median (IQR). All P values <0.1 (considered close to significance) are presented.

Diabetes Care 2016 Dec; dc161582

UKPDS (Hemmingsen et al., 2011)

只控制空腹血糖可能造成的影響-減少飯後血糖波動的重要性

Effect of GLP-1 is glucose-dependent

• Effects of 4-hour GLP-1 infusion (1.2 pmol/kg/min) in 10 patients with type 2 diabetes

Mean (SE); n=10 *p<0.05 GLP-1, glucagon-like peptide-1; SE, standard error Nauck M et al. *Diabetologia* 1993;36:741-744

INTENSIFYING TO INJECTABLE THERAPIES

NEED FOR BASAL-BOLUS

REGIMEN. CONSIDER ADDITIONAL DSMES

Consider:

TITRATION FOR PRANDIAL

GLP-1 has protective effects on kidney

Circulation. 2017;136:1548-1559.

Glucose-independent effects of incretin-based therapies on renal risk factors in type 2 diabet		
GLP-1RA	DPP-4 inhibitor	Putative GLP-1-mediated mechanisms
Decrease etabolic	Decrease	 ↓ Renal ROS production (cAMP and PKA)^{102,179} ↓ AGE-RAGE-mediated renal ROS production (cAMP)^{181,265,266} ↓ Angiotensin II-induced renal ROS production (PKC)^{182,183} ↑ Adiponectin (reduces podocyte inflammation; PKA in adipocytes)²⁶⁷
Decrease or neutral effect odynar	Neutral effect	<pre>↑Tubuloglomerular feedback (by ↓ NHE3 activity) ↓ Postprandial glucagon (particularly short-acting GLP-1RA)^{70,71,90}? ↓ Body weight⁹⁰? ↓ GEE* (postprandial hyperfiltration)⁹⁰? ↓ RAAS activity^{87,127}?</pre>
	se-independ GLP-1RA Decrease etabolic Decrease or neutral effect odynar	se-independent effectsGLP-1RADPP-4 inhibitorDecreaseDecreasetabolicVeutral effectDecreaseNeutral effector neutral effecteffect

Intraglomerular blood pressure is derived from Systemic blood pressure Afferent arteriole tone Efferent arteriole tone

Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea

Fig. 1. Localization of vasopressin- and glucagon-sensitive adenvlate cvclase along the rat nephron. Dot density in the tubules is proportional to increase in adenylate cyclase activity induced by the corresponding hormone. Reproduced from Ref. 175.

Am J Physiol Renal Physiol 309: F2–F23, 2015.

GLP-1 has protective effects on kidney

- Hyperglycaemia causes endothelial dysfunction through several pathways, including reduction of GLP-1R signaling and enhanced Ang II signaling
- GLP-1 has protective effects on glomerular endothelial cells through inhibition of angiotensin II signaling and inhibition of pro-inflammatory action
- GLP-1 partly mediates its protective action via the GLP-1 receptor
 - Expressed in the renal endothelium

GLP1-R agonist: effects on the kidney

Placebo b Mesangial expansion scores 1.5 Liraglutid 1.0 Mesangial 0.5 Expansion 150 Fibronectin staining intensity (% vehicle) 100 **Fibronectin** 100 Podocyte number (/glomerulus) 80 60 Number of 40 20 podocytes е 500 400 GBM (nm) 300 **GBM** width 200 100 0 SQ22536 H-89

Liraglutid reduces renal damage in diabetic mice

SQ: Inhibitor of cAMP H-89: Inhibitor of proteinkinase Fujita et al., Kidney Int 2014;85:579

GLP1-R agonist: effects on the kidney

Knock-out of the GLP-1 Receptor enhances renal damage in diabetic mice

Mice without diabetes GLP1-Receptor + or -

Mice with diabetes GLP1-Receptor + or -

Dosing in DKD pts

- FDA: No dose adjustment is recommended in pts with renal impairment including (ESRD).
- Monitor renal function in pts with severe adverse gastrointestinal reactions.

Renal Impairment and GLP-1 Receptor Agonist Use

GLP-1 Receptor Agonists	Use in Renal Impairment
Albiglutide ^a	 No dose adjustment needed for mild, moderate, or severe renal impairment (eGFR 15-89 mL/min/1.73m²)
Exenatide Extended Release ^b	 Not recommended with eGFR<30 mL/min/1.73m² Use with caution with eGFR 30-50 mL/min/1.73m²
Exenatide Twice Daily ^c	 Not recommended with eGFR<30 mL/min/1.73m² Use with caution with eGFR 30-50 mL/min/1.73m²
Liraglutided	 No dose adjustment needed for mild, moderate, or severe renal impairment (eGFR 15-89 mL/min/1.73m²)
Dulaglutide ^e	 No dose adjustment needed for mild, moderate, or severe renal impairment (eGFR 15-89 mL/min/1.73m²)

a. Tanzeum[®] PI 2014^[15]; b. Bydureon[®] PI 2014^[13]; c. Byetta[®] PI 2013^[16]; d. Victoza[®] PI 2013^[14]; e. Trulicity[®] PI 2014.^[17]

ORIGINAL ARTICLE

Liraglutide and Renal Outcomes in Type 2 Diabetes

Table S2. Baseline characteristics according to trial group			
	Liraglutide	Placebo	
	(N=4668)	(N=4672)	
Male sex, N (%)	3011 (64.5)	2992 (64.0)	
Age, years	64.2	64.4	
Diabetes duration, years	12.8	12.9	
HbA _{le} , %	8.7	8.7	
BMI, kg/m ²	32.5	32.5	
Systolic blood pressure, mmHg	135.9	135.9	
Diastolic blood pressure, mmHg	77.2	77.0	
eGFR (ml/min/1.73 m ²)	80.2	80.6	
Renal function (eGFR, ml/min/1.73 m ²)			
Normal (eGFR <u>></u> 90)	1620 (34.7)	1655 (35.4)	
Mild impairment (eGFR 60-89)	1932 (41.4)	1975 (42.3)	
Moderate impairment (eGFR 30-59)	999 (21.4)	935 (20.0)	
Severe impairment (eGFR <30)	117 (2.5)	107 (2.3)	
Microalbuminuria	1223 (26.2)	1233 (26.4)	
Macroalbuminuria	461 (9.9)	505 (10.8) 1 0 %	
ACE inhibitors and ARB	3905 (83.7)	3836 (82.1)	

Table 1. Composite Renal Outcome and Individ	ual Components of	the Composite Ou	tcome.*		
Outcome	Liraglutide (N=4668)	Placebo (N = 4672)	Total (N = 9340)	Hazard Ratio (95% CI)	P Value
	no. of patients (ra	te per 1000 patient	-yr of observation)		
Composite renal outcome	268 (15.0)	337 (19.0)	605 (17.0)	0.78 (0.67–0.92)	0.003
Components of composite renal outcome					
New-onset persistent macroalbuminuria	161 (9.0)	215 (12.1)	376 (10.6)	0.74 (0.60–0.91)	0.004
Persistent doubling of serum creatinine level	87 (4.9)	97 (5.5)	184 (5.2)	0.89 (0.67–1.19)	0.43
Renal-replacement therapy	56 (3.1)	64 (3.6)	120 (3.4)	0.87 (0.61–1.24)	0.44
Death due to renal disease	8 (0.4)	5 (0.3)	13 (0.4)	1.59 (0.52–4.87)	0.41

Leader trial

N Engl J Med 2017; 377:839-848

AWARD-7 Study Design

A multicenter, parallel-arm, randomized, 52-week clinical trial that assessed the efficacy and safety of dulaglutide (1.5 mg, N=192; 0.75 mg, N=190) vs insulin glargine (N=194) in people with T2D and moderate-to-severe CKD

- Primary Objective: to demonstrate dulaglutide noninferiority for HbA1c change after 26 weeks vs insulin glargine
- Key inclusion criteria: adults with T2D, eGFR of <60 to ≥15 mL/min/1.73 m², BMI 23-45 kg/m², HbA1c ≥7.5% and ≤10.5% for patients receiving insulin + OAM(s) and/or pramlintide or only insulin prior to screening

BMI=body mass index; CKD=chronic kidney disease; eGFR=estimated glomerular filtration rate; HbA1c=glycated hemoglobin; OAM=oral antihyperglycemic medication; T=telephone visit; T2D=type 2 diabetes. ^aGroup A: patients taking OAM(s) ± pramlintide + insulin at Screening had a 13-week Screening/Lead-in Period; Group B: patients taking only insulin at Screening had a 3-week Screening/Lead-In Period; ^bOnce randomized, no distinction between Groups A and B. Insulin glargine dose adjusted to target fasting PG values between 100-150 mg/dL; insulin lispro doses adjusted to target pre-prandial PG values between 120-180 mg/dL... Tuttle et al. Poster presented at: American Diabetes Association 74th Scientific Sessions; June 13-17, 2014, San Francisco, California. Poster 138-LB.

AWARD-7 Baseline Characteristics

Demographics (safety population, except FBG [mITT population])	Dulaglutide 1.5 mg N=192	Dulaglutide 0.75 mg N=190	Insulin Glargine N=194
Sex, women	88 (45.8)	86 (45.3)	101 (52.1)
Age, years	64.7 ± 8.8	64.7 ± 8.6	64.3 ± 8.4
Duration of diabetes, years	17.6 ± 8.7	18.0 ± 8.8	18.7 ± 8.7
HbA1c, %	8.6 ± 0.9	8.6 ± 1.1	8.6 ± 1.0
FBG, mg/dL	161.5 ± 55.6	166.6 ± 70.6	170.7 ± 72.2
Weight, kg	88.1 ± 16.0	90.9 ± 18.3	88.2 ± 18.5
BMI, kg/m ²	32.1 ± 4.8	33.0 ± 5.5	32.4 ± 5.3
Daily total insulin dose, U	58.8 ± 30.1	56.6 ± 31.2	59.3 ± 34.2
Daily total insulin dose, U/kg	0.7 ± 0.3	0.6 ± 0.3	0.7 ± 0.3
^a Duration of CKD Stage 3 or higher, years	4.2 ± 5.6	4.0 ± 4.9	3.5 ± 4.0
eGFR-EPI-creatinine ¹ , mL/min/1.73m ²	38.1 ± 13.2	38.3 ± 12.3	38.5 ± 13.0
60 ≤ Baseline eGFR <90	9 (4.7)	7 (3.7)	14 (7.2)
45 ≤ Baseline eGFR <60	53 (27.6)	53 (27.9)	51 (26.3)
30 ≤ Baseline eGFR <45	73 (38.0)	75 (39.5)	67 (34.5)
15 ≤ Baseline eGFR <30	55 (28.6)	55 (28.9)	61 (31.4)
Baseline eGFR <15	2 (1.0)	0 (0.0)	1 (0.5)
UACR, g/kg (mean [median])	779.1 (213.7)	842.2 (233.6)	919.5 (195.6)
Microalbuminuria (30 ≤ UACR ≤ 300)	74 (38.5)	61 (32.3)	56 (28.9)
Macroalbuminuria (UACR >300)	84 (43.8)	84 (44 4)	90 (46.4)

BL=baseline; BMI=body mass index; CKD=chronic kidney disease; eGFR=estimated glomerular filtration rate; FBG=fasting blood glucose; HbA1c=glycated hemoglobin; mITT=modified intention to treat; UACR=urine albumin:creatinine ratio. Data presented as mean ± SD or n (%) unless otherwise noted. aStage 3 or higher at BL. 1. Levey et al. Ann Intern Med. 2009;150(9):604-612.

	All Participants	Dulaglutide	Placebo
	N=9901	N=4949	N=4952
HbA1c (%)	<mark>7.3</mark>	7.3	7.4
DM Duration (y)	<mark>10.5</mark>	10.5	10.6
Retinopathy (%)	90	9.1	8.9
eGFR <60 ml/min/1.73m ²	<mark>22.2</mark>	21.8	22.6
(%)			
Albuminuria (%)*	<mark>35.0</mark>	34.5	35.5
Metformin (%)	81.2	81.3	81.1
Sulfonylurea (%)	46.0	45.9	46.1
Insulin (%)	23.9	24.0	23.7
DPP4i (%)	5.7	5.4	6.0
Thiazolidinedione (%)	1.7	2.0	1.4
Other incl. SGLT2i (%)	0.3	0.3	0.4

* ACR <u>></u> 3.39 mg/mmol or 30 mg/g

REWIND Summary: Dulaglutide & Renal Outcomes

	Dulaglutide (N/100 py)	Placebo (N/100 py)	HR (95%CI)	Р
Renal Composite Outcome	3.47	4.07	0.85 (0.77, 0.93)	0.0004
Components of Composite				
First Macroalbuminuria ^a	1.76	2.29	0.77 (0.68, 0.87)	<0.0001
Sustained Decline in eGFR of ≥ 30%	1.79	2.00	0.89 (0.78, 1.01)	0.066
Chronic Renal Replacement	0.06	0.08	0.75 (0.39, 1.44)	0.39
Serious Renal Adverse Event ^b	0.32	0.36	0.90 (0.67, 1.20)	0.46
Sensitivity Analyses				
a) Sustained eGFR Decline ≥ 40%	0.66	0.93	0.70 (0.57, 0.85)	0.0004
Renal composite with this decline	2.36	3.10	0.76 (0.68, 0.84)	<0.0001
b) Sustained eGFR Decline ≥ 50%	0.24	0.42	0.56 (0.41, 0.76)	0.0002
Renal composite with this decline	1.99	2.66	0.74 (0.66, 0.84)	<0.0001

^aACR > 33.9 mg/mmol (300 mg/g); ^bany reported AE linked to acute renal failure

Meta-analysis of GLP1-RA and SGLT2i trials on renal end points

Circulation. 2019;139:2022-2031

Α										
Trials	Patients	Events	Treatment n/N	Placebo n/N	Weights					HR [95% Cl]
GLP1-RA										
ELIXA	5286	375	203/2639	172/2647	20.0					0.84 [0.68, 1.02]
LEADER	9340	605	268/4668	337/4672	32.2					0.78 [0.67, 0.92]
SUSTAIN-6	3297	162	62/1648	100/1649	7.7					0.64 [0.46, 0.88]
EXSCEL	14752	773	366/6256	407/6222	40.1					0.88 [0.76, 1.01]
Fixed Effects for G	SLP1-RA (P-value<	0.001)					-			0.82 [0.75, 0.89]
SGLT2i										
EMPA-REG OUTCO	OME 6185	913	525/4124	388/2061	24.9	—				0.61 [0.53, 0.70]
CANVAS Program	10142	847	NA	NA	25.0	⊢				0.57 [0.50, 0.66]
DECLARE-TIMI 58	17160	1675	678/8582	997/8578	50.1					0.66 [0.60, 0.73]
Fixed Effects for S	GLT2i (P-value<0.	.001)				-				0.62 [0.58, 0.67]
						1	i	1		
					0.40	0.50	1.00	1.50	2.00	
в							Hazard Ratio			
Trials	Patients	Events	Treatment n/N	Placebo n/N	Weights				,	HR [95% CI]

GLP1-RA				
ELIXA	6063	76	35/3032	41/3031
LEADER	9340	184	87/4668	97/4672
SUSTAIN-6	3297	32	18/1648	14/1649
EXSCEL	12914	519	246/6456	273/6458

Fixed Effects for GLP1-RA (P-value=0.24)

SGLT2i

EMPA-REG OUTCOME	6968	152	81/4645	71/2323
CANVAS Program	10142	249	NA	NA
DECLARE-TIMI 58	17160	365	127/8582	238/8578
Fixed Effects for SGLT2i (P-value<0.001)				

Exclude Macroalbuminuria

Patients' CV-renal profile and SGLT2i effects on end-points Baseline SBP~ 135-140 mmHg, 80%-100% pts with ACEI/ARB

Although much has been speculated about the potential advantages of combining an SGLT2 inhibitor with an incretin mimetic, **DELIGHT** is the **first study** to do so in patients with type 2 diabetes and moderate-to-severe chronic kidney disease.

THE LANCET **Diabetes & Endocrinology**

Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial

Carol Pollock, Bergur Stefánsson, Daniel Reyner, Peter Rossing, C David Sjöström, David C Wheeler, Anna Maria Langkilde, Hiddo J L Heerspink

Lancet Diabetes Endocrinol. 2019 Apr 12. pii: S2213-8587(19)30086-5.

THE LANCET **Diabetes & Endocrinology**

Comment

SGLT2 inhibitor and incretin mimetic therapy for type 2 diabetes and chronic kidney disease

The pandemic of diabetes has become a global emergency. Despite increasing knowledge about diabetes prevention, this knowledge has not translated into action that effectively reduces diabetes prevalence in communities. The global picture projects an increase in people living with diabetes, from 425 million in 2017 to nearly 630 million by 2045,1 and such an increase also means more people with diabetes complications. Chronic kidney disease develops in almost half of people with type 2 diabetes and is the leading cause of endstage kidney disease worldwide.² Chronic kidney disease greatly magnifies the risk of cardiovascular diseases

blocker therapy. Compared with placebo, reductions in albuminuria (UACR) relative to baseline were greater in both the dapagliflozin group (mean difference -21.0% [95% CI -34·1 to -5·2; p=0·011]) and the dapagliflozin saxagliptin group (-38.0% [-48.2 to -25.8; p<0.0001]) at 24 weeks. Combination treatment produced the numerically greatest decline in albuminuria. Because SGLT2 inhibitors have nominal glycaemic efficacy Published Online at lower eGFR, only combination treatment with a DPP-4 inhibitor produced a significant decrease in HbA, at week 24 versus placebo (mean difference -0.58% [-0.80 to -0.37; p<0.0001]). DELIGHT was \$2213-8587(19)30086-5

April 13, 2019 http://dx.doi.org/10.1016/ \$2213-8587(19)30116-0 See Online/Articles http://dx.doi.org/10.1016/

Lancet Diabetes Endocrinol. 2019 Apr 12. pii: S2213-8587(19)30116-0.

Population

- ≥18 years old
- History of Type 2 diabetes for >12 months
- HbA_{1c}≥7.0% and ≤11.0%
- Stable antidiabetic treatment
- eGFR 25–75 mL/minute/1.73 m^{2*}
- Micro or macroalbuminuria (UACR 30–3500 mg/g)
- Treatment with ACEi or ARB for ≥3 months
- BMI 20-45 kg/m²

*Dapagliflozin is not recommended for use in patients with eGFR <60 mL/minute/1.73 m². The efficacy of dapagliflozin is dependent on renal function.²

Dapagilifozin is not indicated for the management of weight loss, blood pressure reduction or to reduce albuminuria. Weight loss was a secondary endpoint in clinical trials ² Dapagilifozin is not indicated for prevention of CV events. Please consult your local trials in indicated to the secondary is not indicated for prevention of CV events. Please consult your local trials in indicated to the secondary is not indicated for prevention of CV events. Please consult your local trials in indicated to the secondary is not indicated for prevention of CV events. Please consult your local trials in indicated to the secondary local trials in a statistic in the secondary local trials in the secondary endpoint in clinical trials in the secondary local tri

local prescribing information for the approved use of dapagliflozin. Saxagliptin is not indicated for the management of weight loss, blood pressure or albuminuria. Please consult your local prescribing information for the approved use of saxagliptin. ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; UACR, urine albumin; creating plasma glucose; HbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; CKD, hbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; CKD, hbA_{1c}, glycated haemoglobin; SBP, systolic blood pressure; CKD, hbA_{1c}, glycated haem

1. https://clinicaltrials.gov/ct2/show/NCT02547935 Last accessed July 2018; 2. Dapagliflozin. Summary of Product Characteristics.

TW-8927_FOR_16/05/2019

DELIGHT Primary Endpoint: Adjusted Mean Change in UACR

Difference vs. placebo at Week 24			
DAPA	-21.0% (95% CI, -34.1 to -5.2)	p=0.011	
DAPA+SAXA	-38.0% (95% CI, -48.2 to -25.8)	p<0.0001	

Proportion of patients that achieved ≥30% reduction in UACR at Week 24			
PBO	31.3%		
DAPA	45.0%	Odds ratio vs. PBO, 1.9 (95% CI, 1.1-3.0; p=0.013)	
DAPA+SAX A	57.0%	Odds ratio vs. PBO, 3.0 (1.8-4.8; nominal p<0.0001)	

^ap value: <0.001; ^bp value: <0.05. BL = baseline; DAPA = dapagliflozin; PBO = placebo; SAXA = saxagliptin; UACR = urinary albumin-to-creatinine ratio. Pollock C et al. Online ahead of print. *Lancet Diabetes Endocrinol.* 2019.

Canagliflozin increase aGLP-1 through SGLT1 inhibition

83

Canagliflozin Lowers Postprandial Glucose and Insulin by DelayingIntestinal Glucose Absorption in Addition to Increasing UrinaryGlucose Excretion

84

Figure 3—Mean ± SEM plasma concentration-time profiles of GIP (A), PYY (B), total GLP-1(C), and active GLP-1 (D). CANA, canagliflozin.Endocrine Journal 2017, 64 (9), 923-931

The Greater Changes in eGFR; the Better Protection from ARB

Kidney Int. 2011 Aug;80(3):282-7

RENAAL: Relationship between initial eGFR change and subsequent long-term renal function decline

The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics

Telephone contact was made at midpoint between office visits after Wk 52. Site visits were conducted at 26-week intervals after Wk 52.

TAKE HOME MESSAGES

ACEi- or ARB-Based Regimens for Diabetic Nephropathy Do Not Go Far Enough!

In macroalbuminuria

Broken pipe needs wrench and seal glue!

CREDENCE RENNAL IDNT

Glue

GLP-1a/DPP4i: seal glue + SGLT2i+ARB/ACEi: wrench to decrease the flow and pressure

Complementary effect!!

Thanks!!